Manipulating Data in R

Introduction to R for Public Health Researchers

Reshaping Data

In this module, we will show you how to:

1. Reshaping data from wide (fat) to long (tall)
2. Reshaping data from long (tall) to wide (fat)

3. Merging Data/Joins
4. Perform operations by a grouping variable

2/39

Setup

We will show you how to do each operation in base R then show you how to use
the dplyr or tidyr package to do the same operation (if applicable).

See the “Data Wrangling Cheat Sheet using dplyr and tidyr"

+ https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-
cheatsheet.pdf

3/39

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

What is wide/long data?

See http://www.cookbook-

r.com/Manipulating_data/Converting_data_between_wide_and_long_format/

Wide - multiple columns per observation

- e.g. visit1, visit2, visit3

A tibble: 2 x 4
id visitl visit?2 wvisit3
<int> <dbl> <dbl> <dbl>
1 1 10 4 3
2 2 5 0 NA

Long - multiple rows per observation

A tibble: 5 x 3
id visit wvalue
<dbl> <int> <dbl>

1 1 1 10
2 1 2 4
3 1 3 3
4 2 1 5
5 2 2 6

4/39

http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/

What is wide/long data?

More accurately, data is wide or long
with respect to certain variables.

5/39

Data used: Charm City Circulator

http://johnmuschelli.com/intro_to_r/data/Charm_City_Circulator_Ridership.csv

circ = read csv(
pastel ("http://johnmuschelli.com/intro to r/",
"data/Charm City Circulator Ridership.csv"))
head(circ, 2)

A tibble: 2 x 15
day date orangeBoardings orangeAlightings orangeAverage purpleBoardings

<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Mond.. 01/1.. 877 1027 952 NA
2 Tues.. 01/1.. 1777 815 7196 NA

.. with 9 more variables: purpleAlightings <dbl>, purpleAverage <dbl>,
greenBoardings <dbl>, greenAlightings <dbl>, greenAverage <dbl>,

bannerBoardings <dbl>, bannerAlightings <dbl>, bannerAverage <dbl>,
daily <dbl>

class (circSdate)

[1] "character"

6/39

http://johnmuschelli.com/intro_to_r/data/Charm_City_Circulator_Ridership.csv

Creating a Date class from a character date

library (lubridate) # great for dates!
sum(is.na (circSdate))

[1] O

sum(circSdate == "")

[1] O

circ = mutate(circ, date = mdy (date))
sum(is.na(circSdate)) # all converted correctly

[1] O

head (circ$Sdate, 3)

[1] "2010-01-11" "2010-01-12" "2010-01-13"
class (circSdate)

[1] "Date"

7/39

Reshaping data from wide (fat) to long (tall): base R

The reshape command exists. It is a confusing function. Don’t use it.

8/39

tidyr package

tidyr allows you to “tidy” your data. We will be talking about:
gather - make multiple columns into variables, (wide to long)
spread - make a variable into multiple columns, (long to wide)
separate - string into multiple columns

* unite - multiple columns into one string

+ All the “join” functions for mergin are in dplyr

9/39

Reshaping data from wide (fat) to long (tall): tidyr

tidyr::gather - puts column data into rows.

We want the column names into “var” variable in the output dataset and the

value in “number” variable. We then describe which columns we want to “gather:”

long = gather(circ, key = "var", value = "number",

-day, -date, -daily)

head (long, 4)

#

WD

A tibble: 4 x 5

day date daily var number
<chr> <date> <dbl> <chr> <dbl>
Monday 2010-01-11 952 orangeBoardings 8777
Tuesday 2010-01-12 796 orangeBoardings 177
Wednesday 2010-01-13 1212. orangeBoardings 1203
Thursday 2010-01-14 1214. orangeBoardings 1194

10/39

Reshaping data from wide (fat) to long (tall): tidyr

long = gather (circ,

Could be explicit on what we want to gather

long

A tibble: 13,752 x 5
day date
<chr> <date>

O WO JoyuUulrkdWNE

+H=

Monday 2010-01-11
Tuesday 2010-01-12
Wednesday 2010-01-13
Thursday 2010-01-14
Friday 2010-01-15
Saturday 2010-01-16
Sunday 2010-01-17
Monday 2010-01-18
Tuesday 2010-01-19
Wednesday 2010-01-20

daily var
<dbl> <chr>

952
796

1212.
1214.

1644

1490.
888.
999.

1035

13906.
. with 13,742 more rows

orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings
orangeBoardings

key = "var", value = "number",
starts with("orange"), starts with("purple"),
starts with("green"), starts with ("banner"))

number
<dbl>
8777
777
1203
1194
1645
1457
839
999
1023
1375

11/39

Reshaping data from wide (fat) to long (tall): tidyr

long %>% count (var)

A tibble: 12 x 2

OO JOo U dwN

var
<chr>
bannerAlightings
bannerAverage
bannerBoardings
greenAlightings
greenAverage
greenBoardings
orangeAlightings
orangeAverage
orangeBoardings
purpleAlightings
purpleAverage
purpleBoardings

n

<int>

1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146

12/39

Lab Part 1
Website

13/39

http://johnmuschelli.com/intro_to_r/index.html

Making a separator

We will use str replace from stringr to put inthe names

long = long %>% mutate (
var = var $>%
str replace ("Board", " Board") %
str replace("Alight", " Alight")
str replace ("Average", " Average")

>%
3

>%

)

long %>% count (var)

A tibble: 12 x 2

var n

<chr> <int>
1 banner Alightings 1146
2 banner Average 1146
3 banner Boardings 1146
4 green Alightings 1146
5 green Average 1146
6 green Boardings 1146
7 orange Alightings 1146
8 orange Average 1146
9

orange Boardings 1146
10 purple Alightings 1146
11 purple Average 1146
12 purple Boardings 1146

14/39

Reshaping data from wide (fat) to long (tall): tidyr

Now each var is boardings, averages, or alightings. We want to separate these so

“Hn

we can have these by line. Remember “." is special character:

long = separate(long, var, into = c("line", "type"),

head (long, 2)

A tibble: 2 x 6
day date daily line type number
<chr> <date> <dbl> <chr> <chr> <dbl>
1 Monday 2010-01-11 952 orange Boardings 8777
2 Tuesday 2010-01-12 796 orange Boardings 177

unique (long$line)
[1] "orange" "purple" "green" "banner"
unique (longStype)

[1] "Boardings" "Alightings" "Average"

sep = " n)

15/39

Re-uniting all the lines

If we had the opposite problem, we could use the unite function:

o

reunited = long %>%
unite (col = var, line, type, sep =" ")

reunited %$>% select (day, var) %>% head(3) %>% print

A tibble: 3 x 2

day var
<chr> <chr>
1 Monday orange Boardings

2 Tuesday orange Boardings
3 Wednesday orange Boardings

We could also use paste/paste0.

16/39

Lab Part 2
Website

17/39

http://johnmuschelli.com/intro_to_r/index.html

Reshaping data from long (tall) to wide (fat): tidyr

In tidyr, the spread function spreads rows into columns. Now we have a long

data set, but we want to separate the Average, Alightings and Boardings into
different columns:

have to remove missing days

wide = long %$>% filter(!is.na(date))
wide = wide %>% spread (type, number)
head (wide)

A tibble: 6 x 7

day date daily line Alightings Average Boardings

<chr> <date> <dbl> <chr> <dbl> <dbl> <dbl>
1 Friday 2010-01-15 1644 banner NA NA NA
2 Friday 2010-01-15 1644 green NA NA NA
3 Friday 2010-01-15 1644 orange 1643 1644 1645
4 Friday 2010-01-15 1644 purple NA NA NA
5 Friday 2010-01-22 1394. banner NA NA NA
6 Friday 2010-01-22 1394. green NA NA NA

18/39

Lab Part 3
Website

19/39

http://johnmuschelli.com/intro_to_r/index.html

Merging: Simple Data

base has baseline data for ids 1 to 10 and Age

base <- tibble(id = 1:10, Age = seqg(55,60, length=10))
head (base, 2)

A tibble: 2 x 2

id Age
<int> <dbl>

1 1 55
2 2 55.6

visits hasids 1 to 8, then 11 (new id), and 3 visits and outcome

visits <- tibble(id = c(rep(1:8

, 3), 11), visit= c(rep(1l:3, 8), 3),
Outcome seq (

10,50, length=25))
tail (visits, 2)

A tibble: 2 x 3
id visit Outcome
<dbl> <dbl> <dbl>
1 8 3 48.3
2 11 3 50

20/39

Joining in dplyr
Merging/joining data sets together - usually on key variables, usually “id”
?join - see different types of joining for dplyr

Let's look at https://www.rstudio.com/wp-content/uploads/2015/02/data-
wrangling-cheatsheet.pdf

inner join(x, y) -onlyrows that match for x and y are kept

full join(x, y) -all rows of x and y are kept

left join(x, y) -all rows of x are kept even if not merged with y
right join(x, y) -all rows of y are kept even if not merged with x

anti join(x, y) -allrowsfrom x notin y keeping just columns from x.

21/39

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Inner Join

1j = inner join(base, visits)

Joining, by = "id"
dim(1i7])

[1] 24 4

tail (173)

A tibble: 6 x 4

id Age visit Outcome
<dbl>

<dbl> <dbl> <dbl>

7 58.
58.
58.
58.
58.
58.

O Ul W N
00 0O OO J I

O WO WwWww
WkEMNDDN W

20

33.
46.
21.

35
483

3
-
-

.3

22/39

Left Join

1) = left join(base, visits)

Joining, by = "id"

dim (15)
(1] 26 4
tail (19)

A tibble:

o x 4

id Age visit Outcome
<dbl> <dbl> <dbl>

O Ul W N
O W O O O]

60

58.
58.
58.
58.
59.

O OO0 W

2
2
1
3
NA
NA

<dbl>
46.77
21.7
35
48.3
NA
NA

23/39

Logging the joins

The tidylog package can show you log outputs from dplyr (newly added). You

will need to install to use.

library(tidylog)
left join(base, visits)

Joining, by = "id"

left join: added 2 columns (visit, Outcome)

A tibble: 26 x 4

O W

1id
<dbl>

NN e

> rows only 1n X

> rows only 1in y

> matched rows

>

> rows total

Age visit Outcome

<dbl> <dbl>
55 1
55 3
55 2
55.6 2
55.6 1

<dbl>

10

23.
36.
11.

25

3
-
-

2

(includes duplicates)

24/39

Right Join
rj = right join(base, visits)
Joining, by = "id"

right join: added 2 columns (visit, Outcome)

> rows only in x (2)
> rows only 1in y 1
> matched rows 24
> S
> rows total 25

tail (rj, 3)

A tibble: 3 x 4
id Age visit Outcome
<dbl> <dbl> <dbl> <dbl>
1 8 58.9 1 35
2 8 58.9 3 48.3
3 11 NA 3 50

25/39

Right Join: Switching arguments
rj2 = right join(visits, base)
Joining, by = "id"

right join: added one column (Age)

> rows only in x (1)
> rows only 1in y 2
> matched rows 24 (includes duplicates)
> ——
> rows total 26
tail(rj2, 3)

A tibble: 3 x 4
id visit Outcome Age
<dbl> <dbl> <dbl> <dbl>

1 8 3 48.3 58.9
2 9 NA NA 59.4
3 10 NA NA 60

select: no changes

select: columns reordered (id, visit, Outcome, Age) 26/39

Full Join

fj = full join (base, visits)

Joining, by = "id"

full join: added 2 columns (visit, Outcome)
> rows only 1n X

> rows only 1in y

> matched rows

>

> rows total

tail (£5, 4)

A tibble: 4 x 4

id Age visit Outcome

<dbl> <dbl> <dbl>

1 8 58.9 3
2 9 59.4 NA
3 10 60 NA
4 11 NA 3

<dbl>
48.3
NA
NA
50

(includes duplicates)

27/39

Using the by argument

By default - uses intersection of column names. If by specified, then uses that,
but if other columns with same name, adds suffix.

base = base %>% mutate(x = 5)

mutate: new variable 'x' with one unique value and 0% NA
viits = visits %>% mutate(x = 4)

mutate: new variable 'x' with one unique value and 0% NA
head (full join(base, visits))

Joining, by = "id"

full join: added 2 columns (visit, Outcome)

> rows only 1n X 2

> rows only 1in y 1

> matched rows 24 (includes duplicates)
> ——

> rows total 277
28/39

Duplicated

The duplicated command can give you indications if there are duplications in

a vector:

duplicated(1:5)

[1] FALSE FALSE FALSE FALSE FALSE

duplicated(c(1l:5, 1))

[1] FALSE FALSE FALSE FALSE FALSE TRUE
fj %>% mutate(dup id = duplicated(id))

mutate: new variable 'dup 1d' with 2 unique values and 0% NA

A tibble: 27 x 5

id Age visit Outcome

<dbl> <dbl> <dbl>

1 1 55 1
2 1 55 3
3 1 55 2
4 2 55.6 2
5 2 55.6 1
6 2 55.6 3
7 3 56.1 3
8 3 56.1 2
9 3 56.1 1

dup id
<dbl> <lgl>
10 FALSE
23.3 TRUE
36.7 TRUE
11.7 FALSE
25 TRUE
38.3 TRUE
13.3 FALSE
26.7 TRUE
40 TRUE

29/39

Lab Part 4
Website

30/39

http://johnmuschelli.com/intro_to_r/index.html

Finding the First (or Last) record

pivot longer and pivot wider are new (as of 2019) tidyr functions.

See link below:

https://tidyr.tidyverse.org/dev/articles/pivot.html

31/39

https://tidyr.tidyverse.org/dev/articles/pivot.html

Website
Website

32/39

http://johnmuschelli.com/intro_to_r/index.html

Reshaping data from long (tall) to wide (fat): tidyr

We can use rowSums to see if any values in the row is Na and keep if the row,
which is a combination of date and line type has any non-missing data.

head (wide, 3)

A tibble: 3 x 7

day date daily line Alightings Average Boardings
<chr> <date> <dbl> <chr> <dbl> <dbl> <dbl>
1 Friday 2010-01-15 1644 banner NA NA NA
2 Friday 2010-01-15 1644 green NA NA NA
3 Friday 2010-01-15 1644 orange 1643 1644 1645

not namat = wide %>% select (Alightings, Average, Boardings)
select: dropped 4 variables (day, date, daily, line)

not namat = !is.na(not namat)
head (not namat, 2)

Alightings Average Boardings
[1,] FALSE FALSE FALSE
[2,] FALSE FALSE FALSE

wideSgood = rowSums (not namat) > 0

33/39

Reshaping data from long (tall) to wide (fat): tidyr

Now we can filter only the good rows and delete the good column.

wide = wide %>% filter (good)

filter:

select: dropped one variable

head (wide)

i

O Ul LN

A tibble: 6 x 7

day
<chr>
Friday
Friday
Friday
Friday
Friday
Friday

date
<date>
2010-01-15
2010-01-22
2010-01-29
2010-02-05
2010-02-12
2010-02-19

removed 1,700 rows

>% select (—good)

2,884 rows remaining

Alightings Average Boardings

(37%),
(good)

daily line
<dbl> <chr> <dbl>
1644 orange 1643
1394. orange 1388
1332 orange 1322
1218. orange 1204

671 orange 678
1642 orange 1647

<dbl>

1644

1394.

1332

1218.

671
1642

<dbl>

1645
1401
1342
1231

664
1637

34/39

Finding the First (or Last) record

slice allows you to select records (compared to first/last on a vector)

long = long %>% filter (!is.na(number) & number > 0)
filter: removed 5,364 rows (39%), 8,388 rows remaining

first and last = long %>% arrange (date) %>% # arrange by date

filter (type == "Boardings") %>% # keep boardings only
group by (line) %>% # group by line
slice(c(1, n())) # select ("slice") first and last (n() command) lines

filter: removed 5,630 rows (67%), 2,758 rows remaining

group by: one grouping variable (line)

slice (grouped): removed 2,750 rows (>99%), 8 rows remaining
first and last %>% head(4)

A tibble: 4 x ©

Groups: line [2]

day date daily line type number
<chr> <date> <dbl> <chr> <chr> <dbl>
Monday 2012-06-04 13342. banner Boardings 520
Friday 2013-03-01 NA banner Boardings 817
Tuesday 2011-11-01 8873 green Boardings 887
Friday 2013-03-01 NA green Boardings 2592

WD

35/39

Merging in base R (not covered)

Data Merging/Append in Base R

+ merge () IS the most common way to do this with data sets
- we will use the “join” functions from dplyr
rbind/cbind - row/column bind, respectively
- rbind is the equivalent of “appending” in Stata or “setting” in SAS
- cbind allows you to add columns in addition to the previous ways

t () can transpose data but doesn't make it a data.frame

37/39

Merging

merged.data <- merge (base, visits, by = "id")

head (merged.data, 95)

i

oW N
NN QO

55.
55.
55.
55.
55.

Age
00000
00000
00000
55556
55556

X visit
5 1
5 3
5 2
5 2
5 1

dim (merged.data)

[1]

24

5

Outcome

10.
23.
36.
. 66067
25.

11

00000
33333
66607/

00000

38/39

Merging

all.data <- merge (base, visits, by = "id", all = TRUE)
tail (all.data)

id Age x visit Outcome
22 8 58.88889 5 2 21.66667
23 8 58.88889 5 1 35.00000
24 8 58.88889 5 3 48.33333
25 9 59.44444 5 NA NA
26 10 60.00000 5 NA NA

27 11 NA NA 3 50.00000
dim(all.data)

[1] 27 5

39/39

