
Data Visualization
Introduction to R for Public Health Researchers

Read in Data

library(readr)
mort = read_csv(
 "http://johnmuschelli.com/intro_to_r/data/indicatordeadkids35.csv")
mort[1:2, 1:5]

A tibble: 2 x 5
 X1 `1760` `1761` `1762` `1763`
 <chr> <dbl> <dbl> <dbl> <dbl>
1 Afghanistan NA NA NA NA
2 Albania NA NA NA NA

2/88

Read in Data: jhur

jhur::read_mortality()

A tibble: 197 x 255
 X1 `1760` `1761` `1762` `1763` `1764` `1765` `1766` `1767` `1768` `1769`
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 Afgh~ NA NA NA NA NA NA NA NA NA NA
 2 Alba~ NA NA NA NA NA NA NA NA NA NA
 3 Alge~ NA NA NA NA NA NA NA NA NA NA
 4 Ango~ NA NA NA NA NA NA NA NA NA NA
 5 Arge~ NA NA NA NA NA NA NA NA NA NA
 6 Arme~ NA NA NA NA NA NA NA NA NA NA
 7 Aruba NA NA NA NA NA NA NA NA NA NA
 8 Aust~ NA NA NA NA NA NA NA NA NA NA
 9 Aust~ NA NA NA NA NA NA NA NA NA NA
10 Azer~ NA NA NA NA NA NA NA NA NA NA
... with 187 more rows, and 244 more variables: `1770` <dbl>, `1771` <dbl>,
`1772` <dbl>, `1773` <dbl>, `1774` <dbl>, `1775` <dbl>, `1776` <dbl>,
`1777` <dbl>, `1778` <dbl>, `1779` <dbl>, `1780` <dbl>, `1781` <dbl>,
`1782` <dbl>, `1783` <dbl>, `1784` <dbl>, `1785` <dbl>, `1786` <dbl>,
`1787` <dbl>, `1788` <dbl>, `1789` <dbl>, `1790` <dbl>, `1791` <dbl>,
`1792` <dbl>, `1793` <dbl>, `1794` <dbl>, `1795` <dbl>, `1796` <dbl>,
`1797` <dbl>, `1798` <dbl>, `1799` <dbl>, `1800` <dbl>, `1801` <dbl>,
`1802` <dbl>, `1803` <dbl>, `1804` <dbl>, `1805` <dbl>, `1806` <dbl>,
`1807` <dbl>, `1808` <dbl>, `1809` <dbl>, `1810` <dbl>, `1811` <dbl>,
`1812` <dbl>, `1813` <dbl>, `1814` <dbl>, `1815` <dbl>, `1816` <dbl>,
`1817` <dbl>, `1818` <dbl>, `1819` <dbl>, `1820` <dbl>, `1821` <dbl>,
`1822` <dbl>, `1823` <dbl>, `1824` <dbl>, `1825` <dbl>, `1826` <dbl>,
`1827` <dbl>, `1828` <dbl>, `1829` <dbl>, `1830` <dbl>, `1831` <dbl>,
`1832` <dbl>, `1833` <dbl>, `1834` <dbl>, `1835` <dbl>, `1836` <dbl>,
`1837` <dbl>, `1838` <dbl>, `1839` <dbl>, `1840` <dbl>, `1841` <dbl>,

3/88

Data are not Tidy!

ggplot2

Let’s try this out on the childhood mortality data used above. However, let’s do
some manipulation first, by using gather on the data to convert to long.

library(tidyverse)
long = mort
long = long %>% gather(year, morts, -country)
head(long, 2)

A tibble: 2 x 3
 country year morts
 <chr> <chr> <dbl>
1 Afghanistan 1760 NA
2 Albania 1760 NA

5/88

ggplot2

Let’s also make the year numeric, as we did above in the stand-alone year
variable.

library(stringr)
library(dplyr)
long$year = long$year %>% str_replace("^X", "") %>% as.numeric
long = long %>% filter(!is.na(morts))

6/88

Plot the long data

swede_long = long %>% filter(country == "Sweden")
qplot(x = year, y = morts, data = swede_long)

7/88

Plot the long data only up to 2012

qplot(x = year, y = morts, data = swede_long, xlim = c(1760,2012))

8/88

ggplot2

ggplot2 is a package of plotting that is very popular and powerful (using the
grammar of graphics). qplot (“quick plot”), similar to plot

library(ggplot2)
qplot(x = year, y = morts, data = swede_long)

9/88

ggplot2

The generic plotting function is ggplot, which uses aesthetics:

g is an object, which you can adapt into multiple plots!

ggplot(data, aes(args))

g = ggplot(data = swede_long, aes(x = year, y = morts))

10/88

ggplot2

Common aesthetics:

If you set these in aes, you set them to a variable. If you want to set them for all
values, set them in a geom.

x

y

colour/color

size

fill

shape

·

·

·

·

·

·

11/88

ggplot2

You can do this most of the time using qplot, but qplot will assume a
scatterplot if x and y are specified and histogram if x is specified:

g is an object, which you can adapt into multiple plots!

q = qplot(data = swede_long, x = year, y = morts)
q

12/88

ggplot2: what’s a geom?

g on it’s own can’t be plotted, we have to add layers, usually with geom_
commands:

geom_point - add points

geom_line - add lines

geom_density - add a density plot

geom_histogram - add a histogram

geom_smooth - add a smoother

geom_boxplot - add a boxplots

geom_bar - bar charts

geom_tile - rectangles/heatmaps

·

·

·

·

·

·

·

·

13/88

ggplot2: adding a geom and assigning

You “add” things to a plot with a + sign (not pipe!). If you assign a plot to an
object, you must call print to print it.

gpoints = g + geom_point(); print(gpoints) # one line for slides

14/88

ggplot2: adding a geom

Otherwise it prints by default - this time it’s a line

g + geom_line()

15/88

ggplot2: adding a geom

You can add multiple geoms:

g + geom_line() + geom_point()

16/88

ggplot2: adding a smoother

Let’s add a smoother through the points:

g + geom_line() + geom_smooth()

17/88

ggplot2: grouping - using colour

If we want a plot with new data, call ggplot again. Group plots by country using
colour (piping in the data):

sub = long %>% filter(country %in% c("United States", "United Kingdom",
 "Sweden", "Afghanistan", "Rwanda"))
g = sub %>% ggplot(aes(x = year, y = morts, colour = country))
g + geom_line()

18/88

Coloring manually

There are many scale_AESTHETICS_* functions and
scale_AESTHETICS_manual allows to directly specify the colors:

g + geom_line() + scale_colour_manual(values =
 c("United States" = "blue", "United Kingdom" = "green",
 "Sweden" = "black", "Afghanistan" = "red", "Rwanda" = "orange"))

19/88

ggplot2: grouping - using colour

Let’s remove the legend using the guide command:

g + geom_line() + guides(colour = FALSE)

20/88

Lab Part 1

Website

21/88

http://johnmuschelli.com/intro_to_r/index.html

ggplot2: boxplot

ggplot(long, aes(x = year, y = morts)) + geom_boxplot()

22/88

ggplot2: boxplot

For different plotting per year - must make it a factor - but x-axis is wrong!

ggplot(long, aes(x = factor(year), y = morts)) + geom_boxplot()

23/88

ggplot2: boxplot

ggplot(long, aes(x = year, y = morts, group = year)) + geom_boxplot()

24/88

ggplot2: boxplot with points

geom_jitter plots points “jittered” with noise so not overlapping·

sub_year = long %>% filter(year > 1995 & year <= 2000)
ggplot(sub_year, aes(x = factor(year), y = morts)) +
 geom_boxplot(outlier.shape = NA) + # don't show outliers - will below
 geom_jitter(height = 0)

25/88

facets: plotting multiple panels

A facet will make a plot over variables, keeping axes the same (out can change
that):

sub %>% ggplot(aes(x = year, y = morts)) +
 geom_line() +
 facet_wrap(~ country)

26/88

facets: plotting multiple panels

sub %>% ggplot(aes(x = year, y = morts)) +
 geom_line() +
 facet_wrap(~ country, ncol = 1)

27/88

facets: plotting multiple panels

You can use facets in qplot

qplot(x = year, y = morts, geom = "line", facets = ~ country, data = sub)

28/88

facets: plotting multiple panels

You can also do multiple factors with + on the right hand side

sub %>% ggplot(aes(x = year, y = morts)) +
 geom_line() +
 facet_wrap(~ country + x2 + ...)

29/88

Lab Part 2

Website

30/88

http://johnmuschelli.com/intro_to_r/index.html

Devices

By default, R displays plots in a separate panel. From there, you can export the
plot to a variety of image file types, or copy it to the clipboard.

However, sometimes its very nice to save many plots made at one time to one
pdf file, say, for flipping through. Or being more precise with the plot size in the
saved file.

R has 5 additional graphics devices: bmp(), jpeg(), png(), tiff(), and pdf()

31/88

Devices

The syntax is very similar for all of them:

Basically, you are creating a pdf file, and telling R to write any subsequent plots
to that file. Once you are done, you turn the device off. Note that failing to turn
the device off will create a pdf file that is corrupt, that you cannot open.

pdf("filename.pdf", width=8, height=8) # inches
plot() # plot 1
plot() # plot 2
etc
dev.off()

32/88

Saving the output:

png("morts_over_time.png")
print(q)
dev.off()

png
 2

file.exists("morts_over_time.png")

[1] TRUE

33/88

Saving the output

There’s also a ggsave function that is useful for saving a single ggplot object.

34/88

Labels and such

xlab/ylab - functions to change the labels; ggtitle - change the title·

q = qplot(x = year, y = morts, colour = country, data = sub,
 geom = "line") +
 xlab("Year of Collection") + ylab("morts /100,000") +
 ggtitle("Mortality of Children over the years", subtitle = "not great")
q

35/88

Themes

see ?theme_bw - for ggthemes - black and white·

q + theme_bw()

36/88

Themes: change plot parameters

theme - global or specific elements/increase text size·

q + theme(text = element_text(size = 12), title = element_text(size = 20))

37/88

Themes

q = q + theme(axis.text = element_text(size = 14),
 title = element_text(size = 20),
 axis.title = element_text(size = 16),
 legend.position = c(0.9, 0.8)) +
 guides(colour = guide_legend(title = "Country"))
q

38/88

Code for a transparent legend

transparent_legend = theme(legend.background = element_rect(
 fill = "transparent"),
 legend.key = element_rect(fill = "transparent",
 color = "transparent"))
q + transparent_legend

39/88

Lab Part 3

Website

40/88

http://johnmuschelli.com/intro_to_r/index.html

Histograms again: Changing bins

qplot(x = morts, data = sub, bins = 200)

41/88

Multiple Histograms

qplot(x = morts, fill = factor(country),
 data = sub, geom = c("histogram"))

42/88

Multiple Histograms

Alpha refers to the opacity of the color, less is more opaque

qplot(x = morts, fill = country, data = sub,
 geom = c("histogram"), alpha=.7)

43/88

Multiple Densities

We cold also do densities:

qplot(x= morts, fill = country, data = sub,
 geom = c("density"), alpha= .7) + guides(alpha = FALSE)

44/88

Multiple Densities

using colour not fill:·

qplot(x = morts, colour = country, data = sub,
 geom = c("density"), alpha= .7) + guides(alpha = FALSE)

45/88

Multiple Densities

You can take off the lines of the bottom like this

ggplot(aes(x = morts, colour = country), data = sub) +
 geom_line(stat = "density")

46/88

ggplot2

qplot(x = year, y = morts, colour = country,
 data = long, geom = "line") + guides(colour = FALSE)

47/88

ggplot2

Let’s try to make it different like base R, a bit. We use tile for the geom:

qtile = qplot(x = year, y = country, fill = morts, data = sub,
 geom = "tile") + xlim(1990, 2005) + guides(colour = FALSE)

48/88

ggplot2: changing colors

scale_fill_gradient let’s us change the colors for the fill:

qtile + scale_fill_gradient(low = "blue", high = "red")

49/88

ggplot2

Let’s try categories.

sub$cat = cut(sub$morts, breaks = c(0, 1, 2, max(sub$morts)))
q2 = qplot(x = year, y = country, fill = cat, data = sub, geom = "tile") +
 guides(colour = FALSE)

50/88

Colors

It’s actually pretty hard to make a good color palette. Luckily, smart and artistic
people have spent a lot more time thinking about this. The result is the
RColorBrewer package

RColorBrewer::display.brewer.all() will show you all of the palettes
available. You can even print it out and keep it next to your monitor for
reference.

The help file for brewer.pal() gives you an idea how to use the package.

You can also get a “sneak peek” of these palettes at: http://colorbrewer2.org/ .
You would provide the number of levels or classes of your data, and then the
type of data: sequential, diverging, or qualitative. The names of the
RColorBrewer palettes are the string after ‘pick a color scheme:’

51/88

http://colorbrewer2.org/

ggplot2: changing colors

scale_fill_brewer will allow us to use these palettes conveniently

q2 + scale_fill_brewer(type = "div", palette = "RdBu")

52/88

Bar Plots with a table

cars = read_csv(
 "http://johnmuschelli.com/intro_to_r/data/kaggleCarAuction.csv",
 col_types = cols(VehBCost = col_double()))
counts <- table(cars$IsBadBuy, cars$VehicleAge)

53/88

Bar Plots

Stacked Bar Charts are sometimes wanted to show distributions of data·

barplot(counts, main="Car Distribution by Age and Bad Buy Status", xlab="Vehic

54/88

Bar Plots

prop.table allows you to convert a table to proportions (depends on margin -
either row percent or column percent)

Use percentages (column percentages)
barplot(prop.table(counts, 2),
 main = "Car Distribution by Age and Bad Buy Status",
 xlab="Vehicle Age", col=c("darkblue","red"),
 legend = rownames(counts))

55/88

Bar Plots

ggplot(aes(fill = factor(IsBadBuy), x = VehicleAge),
 data = cars) + geom_bar()

56/88

Normalized Stacked Bar charts

we must calculate percentages on our own·

perc = cars %>%
 group_by(IsBadBuy, VehicleAge) %>%
 tally() %>% ungroup
head(perc)

A tibble: 6 x 3
 IsBadBuy VehicleAge n
 <dbl> <dbl> <int>
1 0 0 2
2 0 1 2969
3 0 2 7942
4 0 3 14601
5 0 4 15149
6 0 5 11061

57/88

Each Age adds to 1

perc_is_bad = perc %>%
 group_by(VehicleAge) %>% mutate(perc = n / sum(n))
ggplot(aes(fill = factor(IsBadBuy),
 x = VehicleAge,
 y = perc),
 data = perc_is_bad) + geom_bar(stat = "identity")

58/88

Each Bar adds to 1 for bad buy or not

perc_yr = perc %>%
 group_by(IsBadBuy) %>% mutate(perc = n / sum(n))
ggplot(aes(fill = factor(VehicleAge),
 x = IsBadBuy,
 y = perc),
 data = perc_yr) + geom_bar(stat = "identity")

59/88

ggplot2

Useful links:

http://docs.ggplot2.org/0.9.3/index.html

http://www.cookbook-r.com/Graphs/

·

·

60/88

http://docs.ggplot2.org/0.9.3/index.html
http://www.cookbook-r.com/Graphs/

Website

Website

61/88

http://johnmuschelli.com/intro_to_r/index.html

ggplot examples on a second
dataset

Multiple Histograms

qplot(x = weight,
 fill = factor(Diet),
 data = ChickWeight,
 geom = c("histogram"))

63/88

Multiple Histograms

Alpha refers tot he opacity of the color, less is

qplot(x = weight, fill = Diet, data = ChickWeight,
 geom = c("histogram"), alpha=.7)

64/88

Multiple Densities

We cold also do densities

qplot(x= weight, fill = Diet, data = ChickWeight,
 geom = c("density"), alpha= .7)

65/88

Multiple Densities

qplot(x= weight, colour = Diet, data = ChickWeight,
 geom = c("density"), alpha=.7)

66/88

Multiple Densities

ggplot(aes(x= weight, colour = Diet),
 data = ChickWeight) + geom_density(alpha=.7)

67/88

Multiple Densities

You can take off the lines of the bottom like this

ggplot(aes(x = weight, colour = Diet), data = ChickWeight) +
 geom_line(stat = "density")

68/88

Spaghetti plot

We can make a spaghetti plot by telling ggplot we want a “line”, and each line is
colored by Chick.

qplot(x=Time, y=weight, colour = factor(Chick),
 data = ChickWeight, geom = "line")

69/88

Spaghetti plot: Facets

In ggplot2, if you want separate plots for something, these are referred to as
facets.

qplot(x = Time, y = weight, colour = factor(Chick),
 facets = ~Diet, data = ChickWeight, geom = "line")

70/88

Spaghetti plot: Facets

We can turn off the legend (referred to a “guide” in ggplot2). (Note - there is
different syntax with the +)

qplot(x=Time, y=weight, colour = factor(Chick),
 facets = ~ Diet, data = ChickWeight,
 geom = "line") + guides(colour=FALSE)

71/88

Spaghetti plot: Facets

ggplot(aes(x = Time, y = weight, colour = factor(Chick)),
 data = ChickWeight) + geom_line() +
 facet_wrap(facets = ~Diet) + guides(colour = FALSE)

72/88

Base Graphics - explore on your
own

Basic Plots

library(dplyr)
sweden = mort %>%
 filter(country == "Sweden") %>%
 select(-country)
year = as.numeric(colnames(sweden))
plot(as.numeric(sweden) ~ year)

74/88

Base Graphics parameters

Set within most plots in the base ‘graphics’ package:

pch = point shape, http://voteview.com/symbols_pch.htm

cex = size/scale

xlab, ylab = labels for x and y axes

main = plot title

lwd = line density

col = color

cex.axis, cex.lab, cex.main = scaling/sizing for axes marks, axes labels, and title

·

·

·

·

·

·

·

75/88

http://voteview.com/symbols_pch.htm

Basic Plots

The y-axis label isn’t informative, and we can change the label of the y-axis using
ylab (xlab for x), and main for the main title/label.

plot(as.numeric(sweden) ~ year,
 ylab = "# of morts per family", main = "Sweden", type = "l")

76/88

Basic Plots

Let’s drop any of the projections and keep it to year 2012, and change the points
to blue.

plot(as.numeric(sweden) ~ year,
 ylab = "# of morts per family", main = "Sweden",
 xlim = c(1760,2012), pch = 19, cex=1.2,col="blue")

77/88

Basic Plots

You can also use the subset argument in the plot() function, only when using
formula notation:

plot(as.numeric(sweden) ~ year,
 ylab = "# of morts per family", main = "Sweden",
 subset = year < 2015, pch = 19, cex=1.2,col="blue")

78/88

Bar Plots

Using the beside argument in barplot, you can get side-by-side barplots.

Stacked Bar Plot with Colors and Legend
barplot(counts, main="Car Distribution by Age and Bad Buy Status",
 xlab="Vehicle Age", col=c("darkblue","red"),
 legend = rownames(counts), beside=TRUE)

79/88

Boxplots, revisited

These are one of my favorite plots. They are way more informative than the
barchart + antenna…

boxplot(weight ~ Diet, data=ChickWeight, outline=FALSE)
points(ChickWeight$weight ~ jitter(as.numeric(ChickWeight$Diet),0.5))

80/88

Formulas

Formulas have the format of y ~ x and functions taking formulas have a data
argument where you pass the data.frame. You don’t need to use $ or referencing
when using formulas:

boxplot(weight ~ Diet, data=ChickWeight, outline=FALSE)

81/88

Colors

R relies on color ‘palettes’.

palette("default")
plot(1:8, 1:8, type="n")
text(1:8, 1:8, lab = palette(), col = 1:8)

82/88

Colors

The default color palette is pretty bad, so you can try to make your own.

palette(c("darkred","orange","blue"))
plot(1:3,1:3,col=1:3,pch =19,cex=2)

83/88

Colors

library(RColorBrewer)
palette(brewer.pal(5,"Dark2"))
plot(weight ~ jitter(Time,amount=0.2),data=ChickWeight,
 pch = 19, col = Diet,xlab="Time")

84/88

Adding legends

The legend() command adds a legend to your plot. There are tons of arguments
to pass it.

x, y=NULL: this just means you can give (x,y) coordinates, or more commonly just
give x, as a character string:
“top”,“bottom”,“topleft”,“bottomleft”,“topright”,“bottomright”.

legend: unique character vector, the levels of a factor

pch, lwd: if you want points in the legend, give a pch value. if you want lines, give
a lwd value.

col: give the color for each legend level

85/88

Adding legends

palette(brewer.pal(5,"Dark2"))
plot(weight ~ jitter(Time,amount=0.2),data=ChickWeight,
 pch = 19, col = Diet,xlab="Time")
legend("topleft", paste("Diet",levels(ChickWeight$Diet)),
 col = 1:length(levels(ChickWeight$Diet)),
 lwd = 3, ncol = 2)

86/88

Coloring by variable

circ = read_csv("http://johnmuschelli.com/intro_to_r/data/Charm_City_Circulato
palette(brewer.pal(7,"Dark2"))
dd = factor(circ$day)
plot(orangeAverage ~ greenAverage, data=circ,
 pch=19, col = as.numeric(dd))
legend("bottomright", levels(dd), col=1:length(dd), pch = 19)

87/88

Coloring by variable

dd = factor(circ$day, levels=c("Monday","Tuesday","Wednesday",
 "Thursday","Friday","Saturday","Sunday"))
plot(orangeAverage ~ greenAverage, data=circ,
 pch=19, col = as.numeric(dd))
legend("bottomright", levels(dd), col=1:length(dd), pch = 19)

88/88

