
Data Input/Output
Introduction to R for Public Health Researchers

Data We Use

Everything we do in class will be using real publicly available data - there are
few ‘toy’ example datasets and ‘simulated’ data

OpenBaltimore and Data.gov will be sources for the first few days

We have also added functionality to load these datasets directly in the jhur
package

·

·

·

2/44

Data Input

‘Reading in’ data is the first step of any real project/analysis

R can read almost any file format, especially via add-on packages

We are going to focus on simple delimited files first

·

·

·

tab delimited (e.g. ‘.txt’)

comma separated (e.g. ‘.csv’)

Microsoft excel (e.g. ‘.xlsx’)

-

-

-

3/44

Data Input

Youth Tobacco Survey (YTS) Dataset:

“The YTS was developed to provide states with comprehensive data on both
middle school and high school students regarding tobacco use, exposure to
environmental tobacco smoke, smoking cessation, school curriculum, minors’
ability to purchase or otherwise obtain tobacco products, knowledge and
attitudes about tobacco, and familiarity with pro-tobacco and anti-tobacco media
messages.”

Check out the data at: https://catalog.data.gov/dataset/youth-tobacco-survey-
yts-data

·

4/44

https://catalog.data.gov/dataset/youth-tobacco-survey-yts-data

Data Input

Download data from
http://johnmuschelli.com/intro_to_r/data/Youth_Tobacco_Survey_YTS_Data.csv

Within RStudio: Session –> Set Working Directory –> To Source File Location

·

Safari - if a file loads in your browser, choose File –> Save As, select,
Format “Page Source” and save

-

·

5/44

http://johnmuschelli.com/intro_to_r/data/Youth_Tobacco_Survey_YTS_Data.csv

Data Input

R Studio features some nice “drop down” support, where you can run some tasks
by selecting them from the toolbar.

For example, you can easily import text datasets using the “File –> Import
Dataset –> From CSV” command. Selecting this will bring up a new screen that
lets you specify the formatting of your text file.

After importing a datatset, you get the corresponding R commands that you can
enter in the console if you want to re-import data.

6/44

Read in Directly

mydat = read_csv("http://johnmuschelli.com/intro_to_r/data/Youth_Tobacco_Surve
head(mydat)

A tibble: 6 x 31
 YEAR LocationAbbr LocationDesc TopicType TopicDesc MeasureDesc DataSource
 <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2015 AZ Arizona Tobacco … Cessatio… Percent of… YTS
2 2015 AZ Arizona Tobacco … Cessatio… Percent of… YTS
3 2015 AZ Arizona Tobacco … Cessatio… Percent of… YTS
4 2015 AZ Arizona Tobacco … Cessatio… Quit Attem… YTS
5 2015 AZ Arizona Tobacco … Cessatio… Quit Attem… YTS
6 2015 AZ Arizona Tobacco … Cessatio… Quit Attem… YTS
… with 24 more variables: Response <chr>, Data_Value_Unit <chr>,
Data_Value_Type <chr>, Data_Value <dbl>, Data_Value_Footnote_Symbol <chr>,
Data_Value_Footnote <chr>, Data_Value_Std_Err <dbl>,
Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>, Sample_Size <dbl>
Gender <chr>, Race <chr>, Age <chr>, Education <chr>, GeoLocation <chr>,
TopicTypeId <chr>, TopicId <chr>, MeasureId <chr>, StratificationID1 <chr>
StratificationID2 <chr>, StratificationID3 <chr>, StratificationID4 <chr>,
SubMeasureID <chr>, DisplayOrder <dbl>

7/44

Data Input

So what is going on “behind the scenes”?

read_delim(): Read a delimited file into a data frame.

function (file, delim, quote = "\"", escape_backslash = FALSE,
 escape_double = TRUE, col_names = TRUE, col_types = NULL,
 locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
 comment = "", trim_ws = FALSE, skip = 0, n_max = Inf, guess_max = min(1000
 n_max), progress = show_progress(), skip_empty_rows = TRUE)
NULL

for example: `read_delim("file.txt",delim="\t")`

8/44

Data Input

The filename is the path to your file, in quotes

The function will look in your “working directory” if no absolute file path is
given

Note that the filename can also be a path to a file on a website
(e.g. ‘www.someurl.com/table1.txt’)

·

·

·

9/44

Data Input

There is another convenient function for reading in CSV files, where the delimiter
is assumed to be a comma (readr::read_csv):

function (file, col_names = TRUE, col_types = NULL, locale = default_locale(),
 na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "",
 trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(1000,
 n_max), progress = show_progress(), skip_empty_rows = TRUE)
NULL

10/44

Data Input

The data is now successfully read into your R workspace, just like from using the
dropdown menu.

Here would be reading data from the command line, specifying the file path:·

dat = read_csv("../data/Youth_Tobacco_Survey_YTS_Data.csv")

Parsed with column specification:
cols(
 .default = col_character(),
 YEAR = col_double(),
 Data_Value = col_double(),
 Data_Value_Std_Err = col_double(),
 Low_Confidence_Limit = col_double(),
 High_Confidence_Limit = col_double(),
 Sample_Size = col_double(),
 DisplayOrder = col_double()
)

See spec(...) for full column specifications.

11/44

Data Input: Checking for problems

dat = read_csv("http://johnmuschelli.com/intro_to_r/data/Youth_Tobacco_Survey_

12/44

Data Input: Checking for problems

The spec() and problems() functions show you the specification of how the
data was read in.

·

dim(problems(dat))

[1] 0 4

spec(dat)

cols(
 YEAR = col_double(),
 LocationAbbr = col_character(),
 LocationDesc = col_character(),
 TopicType = col_character(),
 TopicDesc = col_character(),
 MeasureDesc = col_character(),
 DataSource = col_character(),
 Response = col_character(),
 Data_Value_Unit = col_character(),
 Data_Value_Type = col_character(),
 Data_Value = col_double(),
 Data_Value_Footnote_Symbol = col_character(),
 Data_Value_Footnote = col_character(),
 Data_Value_Std_Err = col_double(),
 Low_Confidence_Limit = col_double(),
 High_Confidence_Limit = col_double(),
 Sample_Size = col_double(),
 Gender = col_character(),
 Race = col_character(),

13/44

Data Input: Checking for problems

The stop_for_problems() function will stop if your data had an error when
reading in. If this occurs, you can either use col_types (from spec()) for the
problematic columns, or set guess_max = Inf (takes much longer):

·

stop_for_problems(dat)

14/44

Lab Part 1

Lab

Website

15/44

http://johnmuschelli.com/intro_to_r/Data_IO/lab/Data_IO_Lab.Rmd
http://johnmuschelli.com/intro_to_r/index.html

Data Input

The read_delim() and related functions returns a “tibble” is a data.frame with
special printing, which is the primary data format for most data cleaning and
analyses.

16/44

Data Input with tbl_dfs

When using the dropdown menu in RStudio, it uses read_csv, which is an improved version of reading
in CSVs. It is popular but read.csv is still largely used. It returns a tbl (tibble), that is a data.frame
with improved printing and subsetting properties:

·

library(readr)
head(dat, 3)

A tibble: 3 x 31
 YEAR LocationAbbr LocationDesc TopicType TopicDesc MeasureDesc DataSource
 <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2015 AZ Arizona Tobacco … Cessatio… Percent of… YTS
2 2015 AZ Arizona Tobacco … Cessatio… Percent of… YTS
3 2015 AZ Arizona Tobacco … Cessatio… Percent of… YTS
… with 24 more variables: Response <chr>, Data_Value_Unit <chr>,
Data_Value_Type <chr>, Data_Value <dbl>, Data_Value_Footnote_Symbol <chr>,
Data_Value_Footnote <chr>, Data_Value_Std_Err <dbl>,
Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>, Sample_Size <dbl>,
Gender <chr>, Race <chr>, Age <chr>, Education <chr>, GeoLocation <chr>,
TopicTypeId <chr>, TopicId <chr>, MeasureId <chr>, StratificationID1 <chr>,
StratificationID2 <chr>, StratificationID3 <chr>, StratificationID4 <chr>,
SubMeasureID <chr>, DisplayOrder <dbl>

class(dat)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

17/44

Data Input

nrow() displays the number of rows of a data frame

ncol() displays the number of columns

dim() displays a vector of length 2: # rows, # columns

colnames() displays the column names (if any) and rownames() displays the
row names (if any)

·

·

·

·

dim(dat)

[1] 9794 31

nrow(dat)

[1] 9794

ncol(dat)

[1] 31

colnames(dat)

 [1] "YEAR" "LocationAbbr"
 [3] "LocationDesc" "TopicType"
 [5] "TopicDesc" "MeasureDesc"
 [7] "DataSource" "Response"
 [9] "Data_Value_Unit" "Data_Value_Type" 18/44

Common new user mistakes we have seen

1. Working directory problems: trying to read files that R “can’t find”

2. Typos (R is case sensitive, x and X are different)

3. Data type problems (is that a string or a number?)

4. Open ended quotes, parentheses, and brackets

5. Different versions of software

RStudio can help, and so do RStudio Projects

discuss in Data Input/Output lecture

·

·

RStudio helps with “tab completion”

discussed throughout

·

·

19/44

Working Directories

R “looks” for files on your computer relative to the “working” directory

Many people recommend not setting a directory in the scripts

If you do set a working directory, do it at the beginning of your script.

Example of getting and setting the working directory:

·

·

assume you’re in the directory the script is in

If you open an R file with a new RStudio session, it does this for you.

-

-

·

·

get the working directory
getwd()
setwd("~/Lectures")

20/44

Setting a Working Directory

Setting the directory can sometimes be finicky

Typical directory structure syntax applies

·

Windows: Default directory structure involves single backslashes (“\”), but
R interprets these as “escape” characters. So you must replace the
backslash with forward slashes (“/”) or two backslashes (“\\”)

Mac/Linux: Default is forward slashes, so you are okay

-

-

·

“..” - goes up one level

“./” - is the current directory

“~” - is your “home” directory

-

-

-

21/44

Working Directory

Note that the dir() function interfaces with your operating system and can
show you which files are in your current working directory.

You can try some directory navigation:

dir("./") # shows directory contents

 [1] "Data_IO.html" "Data_IO.pdf"
 [3] "Data_IO.R" "index.html"
 [5] "index.pdf" "index.R"
 [7] "index.Rmd" "lab"
 [9] "lecture.zip" "makefile"
[11] "YouthTobacco_newNames.csv" "yts_dataset.rds"

dir("..")

 [1] "all_functions.xlsx"
 [2] "all_the_functions.csv"
 [3] "all_the_packages.txt"
 [4] "Arrays_Split"
 [5] "Basic_R"
 [6] "Best_Model_Coefficients.csv"
 [7] "Best_Model_Coefficients.xlsx"
 [8] "bibliography.bib"
 [9] "black_and_white_theme.pdf"
[10] "bloomberg.logo.small.horizontal.blue.png"
[11] "data"
[12] "Data_Classes" 22/44

Relative vs. absolute paths (From Wiki)

An absolute or full path points to the same location in a file system, regardless of the
current working directory. To do that, it must include the root directory.

This means if I try your code, and you use absolute paths, it won’t work unless
we have the exact same folder structure where R is looking (bad).

By contrast, a relative path starts from some given working directory, avoiding the
need to provide the full absolute path. A filename can be considered as a relative
path based at the current working directory.

23/44

Setting the Working Directory

In RStudio, go to Session -> Set Working Directory -> To Source File
Location

RStudio should put code in the Console, similar to this:

setwd("~/Lectures/Data_IO/lecture")

24/44

Setting the Working Directory

Again, if you open an R file with a new RStudio session, it does this for you. You
may need to make this a default.

1. Make sure RStudio is the default application to open .R files

Mac - right click –> Get Info –> Open With: RStudio –> Change All

Windows - Andrew will show

·

·

25/44

Help

For any function, you can write ?FUNCTION_NAME, or help("FUNCTION_NAME") to
look at the help file:

?dir
help("dir")

26/44

Lab Part 2

Lab

Website

27/44

http://johnmuschelli.com/intro_to_r/Data_IO/lab/Data_IO_Lab.Rmd
http://johnmuschelli.com/intro_to_r/index.html

Data Input

Changing variable names in data.frames works using the names() function,
which is analagous to colnames() for data frames (they can be used
interchangeably). We use the rename function:

library(dplyr)
dat = rename(dat, year = YEAR)
names(dat)

 [1] "year" "LocationAbbr"
 [3] "LocationDesc" "TopicType"
 [5] "TopicDesc" "MeasureDesc"
 [7] "DataSource" "Response"
 [9] "Data_Value_Unit" "Data_Value_Type"
[11] "Data_Value" "Data_Value_Footnote_Symbol"
[13] "Data_Value_Footnote" "Data_Value_Std_Err"
[15] "Low_Confidence_Limit" "High_Confidence_Limit"
[17] "Sample_Size" "Gender"
[19] "Race" "Age"
[21] "Education" "GeoLocation"
[23] "TopicTypeId" "TopicId"
[25] "MeasureId" "StratificationID1"
[27] "StratificationID2" "StratificationID3"
[29] "StratificationID4" "SubMeasureID"
[31] "DisplayOrder"

28/44

Data Output

While its nice to be able to read in a variety of data formats, it’s equally
important to be able to output data somewhere.

There are also data exporting functions in the readr package, which have the
pattern write_* like write_csv and write_delim

write_delim(x, path, delim = " ", na = "NA", append = FALSE,
 col_names = !append)

29/44

Data Output

x: the R data.frame or matrix you want to write

path: the file name where you want to R object written. It can be an absolute
path, or a filename (which writes the file to your working directory)

delim: what character separates the columns?

“,” = .csv - Note there is also a write_csv() function

“\t” = tab delimited

·

·

30/44

Data Output

There are similar packages in base R, like write.table and write.csv which
have the general arguments, but are called different things. Note these functions
do write out row names, which you can set to FALSE. I do this a lot since I often
email these to collaborators who open them in Excel

31/44

Data Output

For example, we can write back out the Youth Tobacco dataset with the new
column name:

dat = rename(dat, Year = year)
write_csv(dat, path = "YouthTobacco_newNames.csv")

32/44

Lab Part 3

Lab

Website

33/44

http://johnmuschelli.com/intro_to_r/Data_IO/lab/Data_IO_Lab.Rmd
http://johnmuschelli.com/intro_to_r/index.html

Data Input - Excel

Many data analysts collaborate with researchers who use Excel to enter and
curate their data. Often times, this is the input data for an analysis. You therefore
have two options for getting this data into R:

For single worksheet .xlsx files, I often just save the spreadsheet as a .csv file
(because I often have to strip off additional summary data from the columns)

For an .xlsx file with multiple well-formated worksheets, I use the readxl
package for reading in the data.

Saving the Excel sheet as a .csv file, and using read_csv()

Using an add-on package, like xlsx, readxl, or openxlsx

·

·

34/44

Data Input - Other Software

Some of these are now available in the RStudio dropdown list

haven package (https://cran.r-project.org/web/packages/haven/index.html)
reads in SAS, SPSS, Stata formats

readxl package - the read_excel function can read Excel sheets easily

readr package - Has read_csv/write_csv and read_table functions similar to
read.csv/write.csv and read.table. Has different defaults, but can read much
faster for very large data sets

sas7bdat reads .sas7bdat files

foreign package - can read all the formats as haven. Around longer (aka more
testing), but not as maintained (bad for future).

·

·

·

·

·

35/44

https://cran.r-project.org/web/packages/haven/index.html

More ways to save: write_rds

If you want to save one object, you can use readr::write_rds to save to an rds
file:

write_rds(dat, path = "yts_dataset.rds")

36/44

More ways to save: read_rds

To read this back in to R, you need to use read_rds, but need to assign it:

dat2 = read_rds(path = "yts_dataset.rds")
identical(dat, dat2) # test if they are the same

[1] TRUE

37/44

Lab Part 4

Lab

Website

38/44

http://johnmuschelli.com/intro_to_r/Data_IO/lab/Data_IO_Lab.Rmd
http://johnmuschelli.com/intro_to_r/index.html

More ways to save: save

The save command can save a set of R objects into an “R data file”, with the
extension .rda or .RData.

x = 5; # can have semicolons a the end!
calling read_csv function and pasting a long string together
yts = readr::read_csv(
 paste0("http://johnmuschelli.com/intro_to_r/",
 "data/Youth_Tobacco_Survey_YTS_Data.csv"))
save(yts, x, file = "yts_data.rda")

39/44

More ways to save: load

The opposite of save is load. The ls() command lists the items in the
workspace/environment and rm removes them:

ls() # list things in the workspace

[1] "dat" "dat2" "in_rstudio" "lsos" "mydat"
[6] "qq" "req" "x" "yts"

rm(list = c("x", "yts"))
ls()

[1] "dat" "dat2" "in_rstudio" "lsos" "mydat"
[6] "qq" "req"

z = load("yts_data.rda")
ls()

 [1] "dat" "dat2" "in_rstudio" "lsos" "mydat"
 [6] "qq" "req" "x" "yts" "z"

40/44

More ways to save: load

Note, z is a character vector of the names of the objects loaded, not the objects
themselves.

print(z)

[1] "yts" "x"

41/44

Website

Website

42/44

http://johnmuschelli.com/intro_to_r/index.html

Base R: Data Input

There are also data importing functions provided in base R (rather than the
readr package), like read.delim and read.csv.

These functions have slightly different syntax for reading in data, like header and
as.is (which has recently changed in R version 4.0).

However, while many online resources use the base R tools, the latest version of
RStudio switched to use these new readr data import tools, so we will use them
in the class for slides. They are also up to two times faster for reading in large
datasets, and have a progress bar which is nice.

But you can use whatever function you feel more comfortable with.

43/44

Base R: Data Input

Here is how to read in the same dataset using base R functionality, which returns
a data.frame directly

dat2 = read.csv("../data/Youth_Tobacco_Survey_YTS_Data.csv")
head(dat2)

 YEAR LocationAbbr LocationDesc TopicType TopicDesc
1 2015 AZ Arizona Tobacco Use – Survey Data Cessation (Youth)
2 2015 AZ Arizona Tobacco Use – Survey Data Cessation (Youth)
3 2015 AZ Arizona Tobacco Use – Survey Data Cessation (Youth)
4 2015 AZ Arizona Tobacco Use – Survey Data Cessation (Youth)
5 2015 AZ Arizona Tobacco Use – Survey Data Cessation (Youth)
6 2015 AZ Arizona Tobacco Use – Survey Data Cessation (Youth)
 MeasureDesc DataSource Respons
1 Percent of Current Smokers Who Want to Quit YTS
2 Percent of Current Smokers Who Want to Quit YTS
3 Percent of Current Smokers Who Want to Quit YTS
4 Quit Attempt in Past Year Among Current Cigarette Smokers YTS
5 Quit Attempt in Past Year Among Current Cigarette Smokers YTS
6 Quit Attempt in Past Year Among Current Cigarette Smokers YTS
 Data_Value_Unit Data_Value_Type Data_Value Data_Value_Footnote_Symbol
1 % Percentage NA *
2 % Percentage NA *
3 % Percentage NA *
4 % Percentage NA *
5 % Percentage NA *
6 % Percentage NA *
 Data_Value_Footnote
1 Data in these cells have been suppressed because of a small sample size 44/44

