
Data Cleaning
Introduction to R for Public Health Researchers

Before Cleaning - Subsetting with
Brackets

Select specific elements using an index

Often you only want to look at subsets of a data set at any given time. Elements
of an R object are selected using the brackets ([and]).

For example, x is a vector of numbers and we can select the second element of x
using the brackets and an index (2):

dplyr:

x = c(1, 4, 2, 8, 10)
x[2]

[1] 4

nth(x, n = 2)

[1] 4

3/89

Select specific elements using an index

We can select the fifth or second AND fifth elements below:

x = c(1, 2, 4, 8, 10)
x[5]

[1] 10

x[c(2,5)]

[1] 2 10

nth(x, n = c(2, 5)) # nth only returns one number

Error in format_error_bullets(x[-1]): nms %in% c("i", "x", "") is not TRUE

4/89

Subsetting by deletion of entries

You can put a minus (-) before integers inside brackets to remove these indices
from the data.

Note that you have to be careful with this syntax when dropping more than 1
element:

x[-2] # all but the second

[1] 1 4 8 10

x[-c(1,2,3)] # drop first 3

[1] 8 10

x[-1:3] # shorthand. R sees as -1 to 3
x[-(1:3)] # needs parentheses

[1] 8 10

5/89

Select specific elements using logical operators

What about selecting rows based on the values of two variables? We use logical
statements. Here we select only elements of x greater than 2:

x

[1] 1 2 4 8 10

x > 2

[1] FALSE FALSE TRUE TRUE TRUE

x[x > 2]

[1] 4 8 10

6/89

Select specific elements using logical operators

You can have multiple logical conditions using the following:

& : AND

| : OR

·

·

x[x > 2 & x < 5]

[1] 4

x[x > 5 | x == 2]

[1] 2 8 10

7/89

which function

The which functions takes in logical vectors and returns the index for the
elements where the logical value is TRUE.

which(x > 5 | x == 2) # returns index

[1] 2 4 5

x[which(x > 5 | x == 2)]

[1] 2 8 10

x[x > 5 | x == 2]

[1] 2 8 10

8/89

Data Cleaning

In general, data cleaning is a process of investigating your data for inaccuracies,
or recoding it in a way that makes it more manageable.

MOST IMPORTANT RULE - LOOK AT YOUR DATA!

9/89

Useful checking functions

is.na - is TRUE if the data is FALSE otherwise

! - negation (NOT)

all takes in a logical and will be TRUE if ALL are TRUE

any will be TRUE if ANY are true

complete.cases - returns TRUE if EVERY value of a row is NOT NA

·

·

if is.na(x) is TRUE, then !is.na(x) is FALSE-

·

all(!is.na(x)) - are all values of x NOT NA-

·

any(is.na(x)) - do we have any NA’s in x?-

·

very stringent condition

FALSE missing one value (even if not important)

tidyr::drop_na will drop rows with any missing

-

-

-

10/89

Dealing with Missing Data

Missing data types

One of the most important aspects of data cleaning is missing values.

Types of “missing” data:

NA - general missing data

NaN - stands for “Not a Number”, happens when you do 0/0.

Inf and -Inf - Infinity, happens when you take a positive number (or negative
number) by 0.

·

·

·

12/89

Finding Missing data

Each missing data type has a function that returns TRUE if the data is missing:

NA - is.na

NaN - is.nan

Inf and -Inf - is.infinite

is.finite returns FALSE for all missing data and TRUE for non-missing

·

·

·

·

13/89

Missing Data with Logicals

One important aspect (esp with subsetting) is that logical operations return NA
for NA values. Think about it, the data could be > 2 or not we don’t know, so R
says there is no TRUE or FALSE, so that is missing:

x = c(0, NA, 2, 3, 4, -0.5, 0.2)
x > 2

[1] FALSE NA FALSE TRUE TRUE FALSE FALSE

14/89

Missing Data with Logicals

What to do? What if we want if x > 2 and x isn’t NA?
Don’t do x != NA, do x > 2 and x is NOT NA:

x != NA

[1] NA NA NA NA NA NA NA

x > 2 & !is.na(x)

[1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE

15/89

Missing Data with Logicals

What about seeing if a value is equal to multiple values? You can do (x == 1 |
x == 2) & !is.na(x), but that is not efficient.

what to do?

(x == 0 | x == 2) # has NA

[1] TRUE NA TRUE FALSE FALSE FALSE FALSE

(x == 0 | x == 2) & !is.na(x) # No NA

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE

16/89

Missing Data with Logicals: %in%

Filter removes missing values, have to keep them if you want them:

df = tibble(x = x)
df %>% filter(x > 2)

A tibble: 2 x 1
 x
 <dbl>
1 3
2 4

df %>% filter(between(x, -1, 3) | is.na(x))

A tibble: 6 x 1
 x
 <dbl>
1 0
2 NA
3 2
4 3
5 -0.5
6 0.2

17/89

dplyr::filter

Be careful with missing data using subsetting:

x %in% c(0, 2, NA) # this

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

x %in% c(0, 2) | is.na(x) # versus this

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

18/89

Missing Data with Operations

Similarly with logicals, operations/arithmetic with NA will result in NAs:

x + 2

[1] 2.0 NA 4.0 5.0 6.0 1.5 2.2

x * 2

[1] 0.0 NA 4.0 6.0 8.0 -1.0 0.4

19/89

Lab Part 1

Website

20/89

http://johnmuschelli.com/intro_to_r/index.html

Tables and Tabulations

Useful checking functions

unique - gives you the unique values of a variable

table(x) - will give a one-way table of x

table(x, y) - will give a cross-tab of x and y

df %>% count(x, y)

·

·

table(x, useNA = "ifany") - will have row NA-

·

·

df %>% group_by(x, y) %>% tally-

22/89

Creating One-way Tables

Here we will use table to make tabulations of the data. Look at ?table to see
options for missing data.

unique(x)

[1] 0.0 NA 2.0 3.0 4.0 -0.5 0.2

table(x)

x
-0.5 0 0.2 2 3 4
 1 1 1 1 1 1

table(x, useNA = "ifany") # will not

x
-0.5 0 0.2 2 3 4 <NA>
 1 1 1 1 1 1 1

df %>% count(x)

A tibble: 7 x 2
 x n
 <dbl> <int>
1 -0.5 1
2 0 1
3 0.2 1
4 2 1 23/89

Creating One-way Tables

useNA = "ifany" will not have NA in table heading if no NA:

table(c(0, 1, 2, 3, 2, 3, 3, 2, 2, 3),
 useNA = "ifany")

0 1 2 3
1 1 4 4

tibble(x = c(0, 1, 2, 3, 2, 3, 3, 2, 2, 3)) %>% count(x)

A tibble: 4 x 2
 x n
 <dbl> <int>
1 0 1
2 1 1
3 2 4
4 3 4

24/89

Creating One-way Tables

You can set useNA = "always" to have it always have a column for NA

table(c(0, 1, 2, 3, 2, 3, 3, 2, 2, 3),
 useNA = "always")

 0 1 2 3 <NA>
 1 1 4 4 0

25/89

Tables with Factors

If you use a factor, all levels will be given even if no exist! - (May be wanted or
not):

fac = factor(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
 levels = 1:4)
tab = table(fac)
tab

fac
1 2 3 4
1 4 4 0

tab[tab > 0]

fac
1 2 3
1 4 4

tibble(x = fac) %>% count(x)

A tibble: 4 x 2
 x n
 <fct> <int>
1 1 1
2 2 4
3 3 4
4 <NA> 1

26/89

Creating Two-way Tables

A two-way table. If you pass in 2 vectors, table creates a 2-dimensional table.

tab <- table(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
 c(0, 1, 2, 3, 2, 3, 3, 4, 4, 3),
 useNA = "always")
tab

 0 1 2 3 4 <NA>
 0 1 0 0 0 0 0
 1 0 1 0 0 0 0
 2 0 0 2 0 2 0
 3 0 0 0 4 0 0
 <NA> 0 0 0 0 0 0

27/89

Creating Two-way Tables

tab_df = tibble(x = c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
 y = c(0, 1, 2, 3, 2, 3, 3, 4, 4, 3))
tab_df %>% count(x, y)

A tibble: 5 x 3
 x y n
 <dbl> <dbl> <int>
1 0 0 1
2 1 1 1
3 2 2 2
4 2 4 2
5 3 3 4

28/89

Finding Row or Column Totals

margin.table finds the marginal sums of the table. margin is 1 for rows, 2 for
columns in general in R. Here is the column sums of the table:

margin.table(tab, 2)

 0 1 2 3 4 <NA>
 1 1 2 4 2 0

29/89

Proportion Tables

prop.table finds the marginal proportions of the table. Think of it dividing the
table by it’s respective marginal totals. If margin not set, divides by overall total.

prop.table(tab)

 0 1 2 3 4 <NA>
 0 0.1 0.0 0.0 0.0 0.0 0.0
 1 0.0 0.1 0.0 0.0 0.0 0.0
 2 0.0 0.0 0.2 0.0 0.2 0.0
 3 0.0 0.0 0.0 0.4 0.0 0.0
 <NA> 0.0 0.0 0.0 0.0 0.0 0.0

prop.table(tab,1) * 100

 0 1 2 3 4 <NA>
 0 100 0 0 0 0 0
 1 0 100 0 0 0 0
 2 0 0 50 0 50 0
 3 0 0 0 100 0 0
 <NA>

30/89

Creating Two-way Tables

tab_df %>%
 count(x, y) %>%
 group_by(x) %>% mutate(pct_x = n / sum(n))

A tibble: 5 x 4
Groups: x [4]
 x y n pct_x
 <dbl> <dbl> <int> <dbl>
1 0 0 1 1
2 1 1 1 1
3 2 2 2 0.5
4 2 4 2 0.5
5 3 3 4 1

31/89

Creating Two-way Tables

library(scales)

Attaching package: 'scales'

The following object is masked from 'package:purrr':

 discard

The following object is masked from 'package:readr':

 col_factor

tab_df %>%
 count(x, y) %>%
 group_by(x) %>% mutate(pct_x = percent(n / sum(n)))

A tibble: 5 x 4
Groups: x [4]
 x y n pct_x
 <dbl> <dbl> <int> <chr>
1 0 0 1 100%
2 1 1 1 100%
3 2 2 2 50%
4 2 4 2 50%
5 3 3 4 100%

32/89

Lab Part 2

Website

33/89

http://johnmuschelli.com/intro_to_r/index.html

Download Salary FY2014 Data

From https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-
Salaries-FY2015/nsfe-bg53, from https://data.baltimorecity.gov/api/views/nsfe-
bg53/rows.csv

Read the CSV into R Sal:

Sal = jhur::read_salaries() # or
Sal = read_csv("https://johnmuschelli.com/intro_to_r/data/Baltimore_City_Emplo
Sal = rename(Sal, Name = name)

34/89

https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2015/nsfe-bg53
https://data.baltimorecity.gov/api/views/nsfe-bg53/rows.csv

Checking for logical conditions

any() - checks if there are any TRUEs

all() - checks if ALL are true

·

·

head(Sal,2)

A tibble: 2 x 7
 Name JobTitle AgencyID Agency HireDate AnnualSalary GrossP
 <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 Aaron,Pa… Facilities/Off… A03031 OED-Employm… 10/24/1… $55314.00 $53626
2 Aaron,Pe… ASSISTANT STAT… A29045 States Atto… 09/25/2… $74000.00 $73000

any(is.na(Sal$Name)) # are there any NAs?

[1] FALSE

35/89

Recoding Variables

Example of Recoding

For example, let’s say gender was coded as Male, M, m, Female, F, f. Using Excel
to find all of these would be a matter of filtering and changing all by hand or
using if statements.

In dplyr you can use the recode function:

or use ifelse:

data = data %>%
 mutate(gender = recode(gender, M = "Male", m = "Male", M = "Male"))

data %>%
 mutate(gender = ifelse(gender %in% c("Male", "M", "m"),
 "Male", gender))

37/89

Example of Cleaning: more complicated

Sometimes though, it’s not so simple. That’s where functions that find patterns
come in very useful.

table(gender)

gender
 F FeMAle FEMALE Fm M Ma mAle Male MaLe MALE Man
 80 88 76 87 99 76 84 83 79 93 84
 Woman
 71

38/89

Example of Cleaning: more complicated

table(gender)

gender
female Female fm male Male
 164 151 87 339 259

39/89

Strings functions

Splitting/Find/Replace and Regular Expressions

R can do much more than find exact matches for a whole string

Like Perl and other languages, it can use regular expressions.

What are regular expressions?

·

·

·

Ways to search for specific strings

Can be very complicated or simple

Highly Useful - think “Find” on steroids

-

-

-

41/89

A bit on Regular Expressions

http://www.regular-expressions.info/reference.html

They can use to match a large number of strings in one statement

. matches any single character

* means repeat as many (even if 0) more times the last character

? makes the last thing optional

^ matches start of vector ^a - starts with “a”

$ matches end of vector b$ - ends with “b”

·

·

·

·

·

·

·

42/89

http://www.regular-expressions.info/reference.html

The stringr package

The stringr package:

Makes string manipulation more intuitive

Has a standard format for most functions

We will not cover grep or gsub - base R functions

Almost all functions start with str_*

·

·

the first argument is a string like first argument is a data.frame in dplyr-

·

are used on forums for answers-

·

43/89

Let’s look at modifier for stringr

?modifiers

fixed - match everything exactly

regex - default - uses regular expressions

ignore_case is an option to not have to use tolower

·

·

·

44/89

Substring and String Splitting

str_sub(x, start, end) - substrings from position start to position end

str_split(string, pattern) - splits strings up - returns list!

·

·

library(stringr)
x <- c("I really", "like writing", "R code programs")
y <- str_split(x, " ") # returns a list
y

[[1]]
[1] "I" "really"

[[2]]
[1] "like" "writing"

[[3]]
[1] "R" "code" "programs"

45/89

Using a fixed expression

One example case is when you want to split on a period “.”. In regular
expressions . means ANY character, so

str_split("I.like.strings", ".")

[[1]]
 [1] "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""

str_split("I.like.strings", fixed("."))

[[1]]
[1] "I" "like" "strings"

46/89

Let’s extract from y

y[[2]]

[1] "like" "writing"

sapply(y, dplyr::first) # on the fly

[1] "I" "like" "R"

sapply(y, nth, 2) # on the fly

[1] "really" "writing" "code"

sapply(y, last) # on the fly

[1] "really" "writing" "programs"

47/89

Separating columns based on a separator

From tidyr, you can split a data set into multiple columns:·

df = tibble(x = c("I really", "like writing", "R code programs"))

df %>% separate(x, into = c("first", "second", "third"))

Warning: Expected 3 pieces. Missing pieces filled with `NA` in 2 rows [1, 2].

A tibble: 3 x 3
 first second third
 <chr> <chr> <chr>
1 I really <NA>
2 like writing <NA>
3 R code programs

48/89

Separating columns based on a separator

From tidyr, you can split a data set into multiple columns:·

df = tibble(x = c("I really", "like writing", "R code programs"))

df %>% separate(x, into = c("first", "second"))

Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [3].

A tibble: 3 x 2
 first second
 <chr> <chr>
1 I really
2 like writing
3 R code

49/89

Separating columns based on a separator

extra = "merge" will not drop data. Also, you can specify the separator·

df = tibble(x = c("I really", "like. _writing R. But not", "R code programs"))

df %>% separate(x, into = c("first", "second", "third"), extra = "merge")

Warning: Expected 3 pieces. Missing pieces filled with `NA` in 1 rows [1].

A tibble: 3 x 3
 first second third
 <chr> <chr> <chr>
1 I really <NA>
2 like writing R. But not
3 R code programs

50/89

Separating columns based on a separator

extra = "merge" will not drop data. Also, you can specify the separator·

df %>% separate(x, into = c("first", "second", "third"),
 extra = "merge", sep = " ")

Warning: Expected 3 pieces. Missing pieces filled with `NA` in 1 rows [1].

A tibble: 3 x 3
 first second third
 <chr> <chr> <chr>
1 I really <NA>
2 like. _writing R. But not
3 R code programs

51/89

‘Find’ functions: stringr

str_detect, str_subset, str_replace, and str_replace_all search for
matches to argument pattern within each element of a character vector: they
differ in the format of and amount of detail in the results.

str_detect - returns TRUE if pattern is found

str_subset - returns only the strings which pattern were detected

str_extract - returns only strings which pattern were detected, but ONLY the
pattern

str_replace - replaces pattern with replacement the first time

str_replace_all - replaces pattern with replacement as many times
matched

·

·

convenient wrapper around x[str_detect(x, pattern)]-

·

·

·

52/89

‘Find’ functions: Finding Logicals

These are the indices where the pattern match occurs:

head(str_detect(Sal$Name, "Rawlings"))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

53/89

‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

which(str_detect(Sal$Name, "Rawlings"))

[1] 10256 10257 10258

54/89

Showing difference in str_extract

str_extract extracts just the matched string

ss = str_extract(Sal$Name, "Rawling")
head(ss)

[1] NA NA NA NA NA NA

ss[!is.na(ss)]

[1] "Rawling" "Rawling" "Rawling"

55/89

‘Find’ functions: finding values, stringr and dplyr

str_subset(Sal$Name, "Rawlings")

[1] "Rawlings,Kellye A" "Rawlings,Paula M"
[3] "Rawlings-Blake,Stephanie C"

Sal %>% filter(str_detect(Name, "Rawlings"))

A tibble: 3 x 7
 Name JobTitle AgencyID Agency HireDate AnnualSalary GrossP
 <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 Rawlings,Ke… EMERGENCY D… A40302 M-R Info Te… 01/06/2… $48940.00 $73356
2 Rawlings,Pa… COMMUNITY A… A04015 R&P-Recreat… 12/10/2… $19802.00 $10443
3 Rawlings-Bl… MAYOR A01001 Mayors Offi… 12/07/1… $167449.00 $16524

56/89

Using Regular Expressions

Look for any name that starts with:·

Payne at the beginning,

Leonard and then an S

Spence then capital C

-

-

-

head(str_subset(Sal$Name, "^Payne.*"), 3)

[1] "Payne El,Boaz L" "Payne El,Jackie"
[3] "Payne Johnson,Nickole A"

head(str_subset(Sal$Name, "Leonard.?S"))

[1] "Payne,Leonard S" "Szumlanski,Leonard S"

head(str_subset(Sal$Name, "Spence.*C.*"))

[1] "Spencer,Charles A" "Spencer,Clarence W" "Spencer,Michael C"

57/89

Showing differnce in str_extract and str_extract_all

str_extract_all extracts all the matched strings - \\d searches for
DIGITS/numbers

head(str_extract(Sal$AgencyID, "\\d"))

[1] "0" "2" "6" "9" "4" "9"

head(str_extract_all(Sal$AgencyID, "\\d"), 2)

[[1]]
[1] "0" "3" "0" "3" "1"

[[2]]
[1] "2" "9" "0" "4" "5"

58/89

Showing differnce in str_replace and str_replace_all

str_replace_all extracts all the matched strings

head(str_replace(Sal$Name, "a", "j"))

[1] "Ajron,Patricia G" "Ajron,Petra L" "Abjineh,Yohannes T"
[4] "Abbene,Anthony M" "Abbey,Emmjnuel" "Abbott-Cole,Michelle"

head(str_replace_all(Sal$Name, "a", "j"), 2)

[1] "Ajron,Pjtricij G" "Ajron,Petrj L"

59/89

Replace

Let’s say we wanted to sort the data set by Annual Salary:

R didn’t like the $ so it thought turned them all to NA.

class(Sal$AnnualSalary)

[1] "character"

head(Sal$AnnualSalary, 4)

[1] "$55314.00" "$74000.00" "$64500.00" "$46309.00"

head(as.numeric(Sal$AnnualSalary), 4)

Warning in head(as.numeric(Sal$AnnualSalary), 4): NAs introduced by coercion

[1] NA NA NA NA

60/89

Replacing and substituting

Now we can replace the $ with nothing (used fixed("$") because $ means
ending):

Sal = Sal %>% mutate(
 AnnualSalary = str_replace(AnnualSalary, fixed("$"), ""),
 AnnualSalary = as.numeric(AnnualSalary)
) %>%
 arrange(desc(AnnualSalary))

61/89

Pasting strings with paste and paste0

Paste can be very useful for joining vectors together:

paste("Visit", 1:5, sep = "_")

[1] "Visit_1" "Visit_2" "Visit_3" "Visit_4" "Visit_5"

paste("Visit", 1:5, sep = "_", collapse = " ")

[1] "Visit_1 Visit_2 Visit_3 Visit_4 Visit_5"

paste("To", "is going be the ", "we go to the store!", sep = "day ")

[1] "Today is going be the day we go to the store!"

and paste0 can be even simpler see ?paste0
paste0("Visit",1:5)

[1] "Visit1" "Visit2" "Visit3" "Visit4" "Visit5"

62/89

Uniting columns based on a separator

From tidyr, you can unite:·

df = tibble(id = rep(1:5, 3), visit = rep(1:3, each = 5))

df %>% unite(col = "unique_id", id, visit, sep = "_")

A tibble: 15 x 1
 unique_id
 <chr>
 1 1_1
 2 2_1
 3 3_1
 4 4_1
 5 5_1
 6 1_2
 7 2_2
 8 3_2
 9 4_2
10 5_2
11 1_3
12 2_3
13 3_3
14 4_3
15 5_3

63/89

Uniting columns based on a separator

From tidyr, you can unite:·

df = tibble(id = rep(1:5, 3), visit = rep(1:3, each = 5))

df %>% unite(col = "unique_id", id, visit, sep = "_", remove = FALSE)

A tibble: 15 x 3
 unique_id id visit
 <chr> <int> <int>
 1 1_1 1 1
 2 2_1 2 1
 3 3_1 3 1
 4 4_1 4 1
 5 5_1 5 1
 6 1_2 1 2
 7 2_2 2 2
 8 3_2 3 2
 9 4_2 4 2
10 5_2 5 2
11 1_3 1 3
12 2_3 2 3
13 3_3 3 3
14 4_3 4 3
15 5_3 5 3

64/89

Paste Depicting How Collapse Works

paste(1:5)

[1] "1" "2" "3" "4" "5"

paste(1:5, collapse = " ")

[1] "1 2 3 4 5"

65/89

Useful String Functions

Useful String functions

toupper(), tolower() - uppercase or lowercase your data:

str_trim() (in the stringr package) or trimws in base

nchar - get the number of characters in a string

·

·

will trim whitespace-

·

66/89

Sorting characters

sort - reorders the data - characters work, but not correctly

rank - gives the rank of the data - ties are split

order - gives the indices, if subset, would give the data sorted

·

·

·

x[order(x)] is the same as sorting-

sort(c("1", "2", "10")) # not sort correctly (order simply ranks the data)

[1] "1" "10" "2"

order(c("1", "2", "10"))

[1] 1 3 2

x = rnorm(10)
x[1] = x[2] # create a tie
rank(x)

 [1] 2.5 2.5 10.0 7.0 4.0 1.0 8.0 5.0 9.0 6.0

67/89

Lab Part 3

Website

68/89

http://johnmuschelli.com/intro_to_r/index.html

Website

Website

69/89

http://johnmuschelli.com/intro_to_r/index.html

Comparison of stringr to base R -
not covered

Splitting Strings

Substringing

Very similar:

Base R

stringr

substr(x, start, stop) - substrings from position start to position stop

strsplit(x, split) - splits strings up - returns list!

·

·

str_sub(x, start, end) - substrings from position start to position end

str_split(string, pattern) - splits strings up - returns list!

·

·

72/89

Splitting String: base R

In base R, strsplit splits a vector on a string into a list

x <- c("I really", "like writing", "R code programs")
y <- strsplit(x, split = " ") # returns a list
y

[[1]]
[1] "I" "really"

[[2]]
[1] "like" "writing"

[[3]]
[1] "R" "code" "programs"

73/89

Showing differnce in str_extract and str_extract_all

str_extract_all extracts all the matched strings - \\d searches for
DIGITS/numbers

head(str_extract(Sal$AgencyID, "\\d"))

[1] "2" "9" "6" "2" "0" "0"

head(str_extract_all(Sal$AgencyID, "\\d"), 2)

[[1]]
[1] "2" "9" "0" "0" "1"

[[2]]
[1] "9" "9" "3" "9" "0"

74/89

‘Find’ functions: base R

grep: grep, grepl, regexpr and gregexpr search for matches to argument
pattern within each element of a character vector: they differ in the format of
and amount of detail in the results.

grep(pattern, x, fixed=FALSE), where:

pattern = character string containing a regular expression to be matched in
the given character vector.

x = a character vector where matches are sought, or an object which can be
coerced by as.character to a character vector.

If fixed=TRUE, it will do exact matching for the phrase anywhere in the vector
(regular find)

·

·

·

75/89

‘Find’ functions: stringr compared to base R

Base R does not use these functions. Here is a “translator” of the stringr
function to base R functions

str_detect - similar to grepl (return logical)

grep(value = FALSE) is similar to which(str_detect())

str_subset - similar to grep(value = TRUE) - return value of matched

str_replace - similar to sub - replace one time

str_replace_all - similar to gsub - replace many times

·

·

·

·

·

76/89

Important Comparisons

Base R:

stringr

Argument order is (pattern, x)

Uses option (fixed = TRUE)

·

·

Argument order is (string, pattern) aka (x, pattern)

Uses function fixed(pattern)

·

·

77/89

‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

grep("Rawlings",Sal$Name)

[1] 9 6854 13284

which(grepl("Rawlings", Sal$Name))

[1] 9 6854 13284

which(str_detect(Sal$Name, "Rawlings"))

[1] 9 6854 13284

78/89

‘Find’ functions: Finding Logicals

These are the indices where the pattern match occurs:

head(grepl("Rawlings",Sal$Name))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

head(str_detect(Sal$Name, "Rawlings"))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

79/89

‘Find’ functions: finding values, base R

grep("Rawlings",Sal$Name,value=TRUE)

[1] "Rawlings-Blake,Stephanie C" "Rawlings,Kellye A"
[3] "Rawlings,Paula M"

Sal[grep("Rawlings",Sal$Name),]

A tibble: 3 x 7
 Name JobTitle AgencyID Agency HireDate AnnualSalary GrossP
 <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
1 Rawlings-Bl… MAYOR A01001 Mayors Offi… 12/07/1… 167449 $16524
2 Rawlings,Ke… EMERGENCY D… A40302 M-R Info Te… 01/06/2… 48940 $73356
3 Rawlings,Pa… COMMUNITY A… A04015 R&P-Recreat… 12/10/2… 19802 $10443

80/89

Showing differnce in str_extract

str_extract extracts just the matched string

ss = str_extract(Sal$Name, "Rawling")
head(ss)

[1] NA NA NA NA NA NA

ss[!is.na(ss)]

[1] "Rawling" "Rawling" "Rawling"

81/89

Showing differnce in str_extract and str_extract_all

str_extract_all extracts all the matched strings

head(str_extract(Sal$AgencyID, "\\d"))

[1] "2" "9" "6" "2" "0" "0"

head(str_extract_all(Sal$AgencyID, "\\d"), 2)

[[1]]
[1] "2" "9" "0" "0" "1"

[[2]]
[1] "9" "9" "3" "9" "0"

82/89

Using Regular Expressions

Look for any name that starts with:·

Payne at the beginning,

Leonard and then an S

Spence then capital C

-

-

-

head(grep("^Payne.*", x = Sal$Name, value = TRUE), 3)

[1] "Payne,James R" "Payne,Karen V" "Payne,Jasman T"

head(grep("Leonard.?S", x = Sal$Name, value = TRUE))

[1] "Szumlanski,Leonard S" "Payne,Leonard S"

head(grep("Spence.*C.*", x = Sal$Name, value = TRUE))

[1] "Spencer,Michael C" "Spencer,Clarence W" "Spencer,Charles A"

83/89

Using Regular Expressions: stringr

head(str_subset(Sal$Name, "^Payne.*"), 3)

[1] "Payne,James R" "Payne,Karen V" "Payne,Jasman T"

head(str_subset(Sal$Name, "Leonard.?S"))

[1] "Szumlanski,Leonard S" "Payne,Leonard S"

head(str_subset(Sal$Name, "Spence.*C.*"))

[1] "Spencer,Michael C" "Spencer,Clarence W" "Spencer,Charles A"

84/89

Replace

Let’s say we wanted to sort the data set by Annual Salary:

class(Sal$AnnualSalary)

[1] "numeric"

sort(c("1", "2", "10")) # not sort correctly (order simply ranks the data)

[1] "1" "10" "2"

order(c("1", "2", "10"))

[1] 1 3 2

85/89

Replace

So we must change the annual pay into a numeric:

R didn’t like the $ so it thought turned them all to NA.

sub() and gsub() can do the replacing part in base R.

head(Sal$AnnualSalary, 4)

[1] 238772 211785 200000 192500

head(as.numeric(Sal$AnnualSalary), 4)

[1] 238772 211785 200000 192500

86/89

Replacing and subbing

Now we can replace the $ with nothing (used fixed=TRUE because $ means
ending):

Sal$AnnualSalary <- as.numeric(gsub(pattern = "$", replacement="",
 Sal$AnnualSalary, fixed=TRUE))
Sal <- Sal[order(Sal$AnnualSalary, decreasing=TRUE),]
Sal[1:5, c("Name", "AnnualSalary", "JobTitle")]

A tibble: 5 x 3
 Name AnnualSalary JobTitle
 <chr> <dbl> <chr>
1 Mosby,Marilyn J 238772 STATE'S ATTORNEY
2 Batts,Anthony W 211785 Police Commissioner
3 Wen,Leana 200000 Executive Director III
4 Raymond,Henry J 192500 Executive Director III
5 Swift,Michael 187200 CONTRACT SERV SPEC II

87/89

Replacing and subbing: stringr

We can do the same thing (with 2 piping operations!) in dplyr

dplyr_sal = Sal
dplyr_sal = dplyr_sal %>% mutate(
 AnnualSalary = AnnualSalary %>%
 str_replace(
 fixed("$"),
 "") %>%
 as.numeric) %>%
 arrange(desc(AnnualSalary))
check_Sal = Sal
rownames(check_Sal) = NULL
all.equal(check_Sal, dplyr_sal)

[1] TRUE

88/89

Website

Website

89/89

http://127.0.0.1:6524/index.html

