Data Cleaning

Introduction to R for Public Health Researchers



Before Cleaning - Subsetting with
Brackets



Select specific elements using an index

Often you only want to look at subsets of a data set at any given time. Elements
of an R object are selected using the brackets ([ and 1).

For example, x is a vector of numbers and we can select the second element of x
using the brackets and an index (2):

3/89



Select specific elements using an index

We can select the fifth or second AND fifth elements below:

nth(x, n = c(2, 5)) # nth only returns one number

Error in format error bullets(x[-1]): nms %in% c("i", "x", "") 1s not TRUE

4/89



Subsetting by deletion of entries

You can put a minus (-) before integers inside brackets to remove these indices
from the data.

xX[-2] # all but the second

(1] 1 4 8 10

Note that you have to be careful with this syntax when dropping more than 1
element:

x[-c(1,2,3)] # drop first 3
[1] 8 10

# x[-1:3] # shorthand. R sees as -1 to 3
x[-(1:3)] # needs parentheses

[1] 8 10

5/89



Select specific elements using logical operators

What about selecting rows based on the values of two variables? We use logical
statements. Here we select only elements of x greater than 2:

(1] 1 2 4 8 10
[1] FALSE FALSE TRUE TRUE TRUE

X[ x > 2 ]

[1] 4 8 10

6/89



Select specific elements using logical operators

You can have multiple logical conditions using the following;:

& : AND
| : OR

7/89



which function

The which functions takes in logical vectors and returns the index for the
elements where the logical value is TRUE.

which(x > 5 | x == 2) # returns index
[1] 2 4 5

X[ which(x > 5 | x == 2) ]

[1] 2 8 10

x[ x >5 | x == ]

[1] 2 8 10

8/89



Data Cleaning

In general, data cleaning is a process of investigating your data for inaccuracies,
or recoding it in a way that makes it more manageable.

MOST IMPORTANT RULE - LOOK AT YOUR DATA!

9/89



Useful checking functions

is.na - is TRUE if the data is FALSE otherwise
! - negation (NOT)
- ifis.na(x) IS TRUE, then !'is.na (x) iS FALSE
all takesin a logical and will be TRUE if ALL are TRUE
- all(!is.na(x)) -are all values of x NOT NA
any Will be TRUE if ANY are true
- any(is.na(x)) - do we have any Na's in x?
complete.cases - returns TRUE if EVERY value of a row is NOT na
- very stringent condition
- FALSE missing one value (even if not important)

- tidyr::drop na Will drop rows with any missing

10/89



Dealing with Missing Data



Missing data types

One of the most important aspects of data cleaning is missing values.
Types of “missing” data:

+ NA - general missing data

* NaN - stands for “Not a Number”, happens when you do 0/0.

+ Inf and -1Inf - Infinity, happens when you take a positive number (or negative
number) by 0.

12/89



Finding Missing data

Each missing data type has a function that returns TRUE if the data is missing:
* NA-is.na

* NaN-is.nan

Inf and -Inf-is.infinite

is.finite returns FALSE for all missing data and TRUE for non-missing

13/89



Missing Data with Logicals

One important aspect (esp with subsetting) is that logical operations return Na
for Na values. Think about it, the data could be > 2 or not we don't know, so r
says there is no TRUE or FALSE, SO that is missing:

(0, NA, 2, 3, 4, -0.5, 0.2)

X ©
X 2

Vol

[1] FALSE NA FALSE TRUE TRUE FALSE FALSE

14/89



Missing Data with Logicals

What to do? What if we wantif x > 2 and x isn't NA?
Dontdox !'= Na dox > 2andxis NOT NA;

x !'= NA
[1] NA NA NA NA NA NA NA
X > 2 & !'is.na (x)

[1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE

15/89



Missing Data with Logicals

What about seeing if a value is equal to multiple values? You can do (x == |
x == 2) & !is.na(x), butthatis not efficient.

(x == 0 | x == 2) # has NA

[1] TRUE NA TRUE FALSE FALSE FALSE FALSE
(x == 0 | x == 2) & !is.na(x) # No NA

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE

what to do?

16/89



Missing Data with Logicals: $in%

Filter removes missing values, have to keep them if you want them:

df = tibble (x = x)
df %>% filter(x > 2)

# A tibble: 2 x 1

X
<dbl>

1 3
2 4

df $>% filter (between (x,

# A tibble: 6 x 1
x
<dbl>
0
NA

O Ul LN
OO W
N U1

-1,

3)

is.na(x))

17/89



dplyr::filter

Be careful with missing data using subsetting:

x %in% c(0, 2, NA) # this

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE
X %in% c(0, 2) | is.na(x) # versus this

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

18/89



Missing Data with Operations

Similarly with logicals, operations/arithmetic with Na will result in NAS:

X + 2

[1] 2.0 NA 4.0 5.0 6.0 1.5 2.2

[1] 0.0 NA 4.0 6.0 8.0 -1.0 0.4

19/89



Lab Part 1
Website

20/89


http://johnmuschelli.com/intro_to_r/index.html

Tables and Tabulations



Useful checking functions
unigque - gives you the unique values of a variable
table (x) - will give a one-way table of x
- table(x, useNA = "ifany") - will have row NA
table (x, y) - will give a cross-tab of x and y
df %>% count(x, V)

- df $>% group by(x, y) %>% tally

22/89



Creating One-way Tables

Here we will use table to make tabulations of the data. Look at 2table to see
options for missing data.

unique (x)

[1] 0.0 NA 2.0 3.0 4.0 -0.5 0.2

table (x)
X
-0.5 0 0.2 2 3 4

1 1 1 1 1 1
table(x, useNA = "ifany") # will not
X
-0.5 0O 0.2 2 3 4 <NA>

1 1 1 1 1 1 1

df %$>% count (x)

# A tibble: 7 x 2

X n

<dbl> <int>

1 -0.5 1

2 0 1

3 0.2 1
4 5 1 23/89



Creating One-way Tables

useNA = "ifany" Will not have NA in table heading if no Na:

table(c (0, 1, 2, 3, 2, 3, 3, 2, 2, 3),
useNA = "ifany")

0123
114 4
tibble(x = c¢(0, 1, 2, 3, 2, 3, 3, 2, 2, 3)) %>% count (x)

# A tibble: 4 x 2

X n
<dbl> <int>

1 0 1
2 1 1
3 2 4
@ 3 4

24/89



Creating One-way Tables

You can set useNA = "always" to have it always have a column for na

table(c (0, 1, 2, 3, 2, 3, 3, 2, 2, 3),
useNA = "always")

1 2 3 <NA>
1 4 4 0

el E)

25/89



Tables with Factors

If you use a factor, all levels will be given even if no exist! - (May be wanted or

not):

fac

tab
tab

fa
1
1

SN QA

tab[ tab > 0

fa
1
1

SN QA

tibble (x

# A tibble:

X

3
z

3
z

factor (c (0, 1,

levels

table (fac)

4
0

fac)

4

n

<fct> <int>

S w N
A WN -

SR N N

]

X 2

$>% count (x)

26/89



Creating Two-way Tables

A two-way table. If you pass in 2 vectors, table creates a 2-dimensional table.

tab <- table (c (0,
c (0,
useNA

tab

A WN RO
cloNoNoN o)

oo orr

OQOMNOON

O OO O W

OONOO DN

OO OO oV

"always"

27/89



Creating Two-way Tables

tab_df = tibble(x = c(0, 1, 2,
Y = c(0, 1, 2, 3,
tab df %>% count(x, y)

3, 2y
2, Iy

4
4

# A tibble: 5 x 3
X Y n
<dbl> <dbl> <int>

O W
wbhhdhDE O
Wik EFE O
SN - -

28/89



Finding Row or Column Totals

margin.table finds the marginal sums of the table. margin is 1 for rows, 2 for
columns in general in R. Here is the column sums of the table:

margin.table (tab, 2)

3 4 <NA>

0 1
1 4 2 0

2
1 2

29/89



Proportion Tables

prop.table finds the marginal proportions of the table. Think of it dividing the
table by it's respective marginal totals. If margin not set, divides by overall total.

prop.table (tab)

0 1 2 3 4 <NA>
0 0.1 0.0 0.0 0.0 0.0 0.0
1 0.0 0.1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.2 0.0 0.2 0.0
3 0.0 0.0 0.0 0.4 0.0 0.0
<NA> 0.0 0.0 0.0 0.0 0.0 0.0

prop.table(tab,1) * 100

0 1 2 3 4 <NA>
0 100 0 0 0 0 0
1 0 100 0 0 0 0
2 0 0 50 0 50 0
3 0 0 0 100 0 0
<NA>

30/89



Creating Two-way Tables

tab df 3>%
(

count (x, y) %>%
group by (x) %>% mutate(pct x = n / sum(n))
# A tibble: 5 x 4
# Groups: x [4]
X Yy n pct x
<dbl> <dbl> <int> <dbl>
1 0 0 1 1
2 1 1 1 1
3 2 2 2 0.5
4 2 4 2 0.5
5 3 3 4 1

31/89



Creating Two-way Tables

library(scales)

Attaching package:

The following object i1s masked from 'package:purrr':

discard

The following object is masked from 'package:readr':

col factor

tab df 3>%
(

count (x, y) %>%

group by (x) %>%

# A tibble: 5 x 4

# Groups: x [4]
b4 Y n

<dbl> <dbl> <int>

O W
wbhhdhDdE O
WhkhMNDEHE O
SN -

'scales'

mutate (pct x = percent(n / sum(n)))

pct X
<chr>
100%
100%
50%
50%
100%

32/89



Lab Part 2
Website

33/89


http://johnmuschelli.com/intro_to_r/index.html

Download Salary FY2014 Data

From https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-
Salaries-FY2015/nsfe-bg53, from https://data.baltimorecity.gov/api/views/nsfe-
bg53/rows.csv

Read the CSVinto R sa1l:

Sal = jhur::read salaries() # or
Sal = read csv("https://johnmuschelli.com/intro to r/data/Baltimore City Emplc
Sal = rename (Sal, Name = name)

34/89


https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2015/nsfe-bg53
https://data.baltimorecity.gov/api/views/nsfe-bg53/rows.csv

Checking for logical conditions

any () - checks if there are any TRUES
all () - checks if ALL are true

head (Sal, 2)
# A tibble: 2 x 7
Name JobTitle AgencyID Agency HireDate AnnualSalary Grosst
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 Aaron,Pa.. Facilities/Off.. A03031 OED-Employm.. 10/24/1.. $55314.00 $5362¢
2 Aaron,Pe.. ASSISTANT STAT.. A29045 States Atto.. 09/25/2.. $74000.00 $7300(

any (is.na(SalSName)) # are there any NAsS?

[1] FALSE

35/89



Recoding Variables



Example of Recoding

For example, let's say gender was coded as Male, M, m, Female, F, f. Using Excel
to find all of these would be a matter of filtering and changing all by hand or
using if statements.

In dplyr you can use the recode function:

data = data %>%
mutate (gender = recode (gender, M = "Male", m = "Male", M = "Male"))

or use ifelse:

data %>%
mutate (gender = ifelse(gender %in% c("Male", "M", "m"),
"Male", gender))

37/89



Example of Cleaning: more complicated

Sometimes though, it's not so simple. That's where functions that find patterns
come in very useful.

table (gender)

gender
FF FeMAle FEMALE Fm M Ma mAle Male Male MALE Man
80 88 S 877 99 760 84 83 79 93 84
Woman

71

38/89



Example of Cleaning: more complicated

table (gender)

gender
female Female fm male Male
104 151 877 339 259

39/89



Strings functions



Splitting/Find/Replace and Regular Expressions

+ R can do much more than find exact matches for a whole string
- Like Perl and other languages, it can use regular expressions.
- What are regular expressions?

- Ways to search for specific strings

- Can be very complicated or simple

- Highly Useful - think “Find” on steroids

41/89



A bit on Regular Expressions

http://www.regular-expressions.info/reference.html
+ They can use to match a large number of strings in one statement

. matches any single character

* means repeat as many (even if 0) more times the last character
? makes the last thing optional

~ matches start of vector ~a - starts with “a”

s matches end of vector bs$ - ends with “b”

42/89


http://www.regular-expressions.info/reference.html

The stringr package
The stringr package:

Makes string manipulation more intuitive
Has a standard format for most functions
- the first argument is a string like first argument is a data. frame in dplyr
- We will not cover grep or gsub - base R functions
- are used on forums for answers

+ Almost all functions start with str *

43/89



Let's look at modifier for stringr

?modifiers

fixed - match everything exactly
regex - default - uses regular expressions

ignore case iS an option to not have to use tolower

44/89



Substring and String Splitting
str sub(x, start, end) -substrings from position start to position end

str split(string, pattern) -splits strings up - returns list!

library (stringr)
x <= c("I really", "like writing", "R code programs")

y <- str split(x, " ") # returns a list
%

[[1]]

[l] "I" "really"

[[2]]

[1] "like" "writing"

[[3]]

[l] nRw "code" "programs"

45/89



Using a fixed expression

11

One example case is when you want to split on a period
expressions . means ANY character, so

str split("I.like.strings", ".")

[[1]1]
1

[ :| mwiw mww mww mww mww mwiw mww mww mww mww mww mww mww mww mww
str split("I.like.strings", fixed("."))

[[11]
[l] nwn "] {ike" "Strings"

.".In regular

46/89



Let's extract fromy

y[l[2]]

[1] "like" "writing"

sapply(y, dplyr::first) # on the fly
[1] "I" "like" "R"

sapply(y, nth, 2) # on the fly

[1] "really" "writing" "code"
sapply(y, last) # on the fly

[1] "really" "writing" "programs"

47/89



Separating columns based on a separator

From tidyr, you can split a data set into multiple columns:

df = tibble(x = c ("I really", "like writing", "R code programs"))
df $>% separate(x, into = c("first", "second", "third"))
Warning: Expected 3 pieces. Missing pieces filled with "NA  in 2 rows [1, 2].

# A tibble: 3 x 3
first second third
<chr> <chr> <chr>
1T really <NA>
2 like writing <NA>
3 R code programs

48/89



Separating columns based on a separator

From tidyr, you can split a data set into multiple columns:

df = tibble(x = c ("I really", "like writing", "R code programs"))
df %$>% separate(x, into = c("first", "second"))
Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [3].

# A tibble: 3 x 2
first second
<chr> <chr>

1T really

2 like writing

3 R code

49/89



Separating columns based on a separator

extra = "merge" Will not drop data. Also, you can specify the separator

df = tibble(x = c("I really", "like. writing R. But not", "R code programs"))
df $>% separate(x, into = c("first", "second", "third"), extra = "merge")
Warning: Expected 3 pieces. Missing pieces filled with "NA  in 1 rows [1].

# A tibble: 3 x 3
first second third
<chr> <chr> <chr>
1T really <NA>
2 like writing R. But not
3 R code programs

50/89



Separating columns based on a separator

extra = "merge" Will not drop data. Also, you can specify the separator

df $>% separate(x, into = c("first", "second", "third"),
extra = "merge", sep =" ")

Warning: Expected 3 pieces. Missing pieces filled with "NA in 1 rows [1].

# A tibble: 3 x 3
first second third

<chr> <chr> <chr>
1T really <NA>
2 like. writing R. But not
3 R code programs

51/89



‘Find’ functions: stringr

str detect, str subset, str replace, and str replace all search for

matches to argument pattern within each element of a character vector: they
differ in the format of and amount of detail in the results.

str detect - returns TRUE if pattern is found
str subset - returns only the strings which pattern were detected
- convenient wrapper around x [str detect (x, pattern)]

str extract - returns only strings which pattern were detected, but ONLY the
pattern

str replace - replaces pattern with replacement the first time

str replace all -replaces pattern With replacement as many times
matched

52/89



‘Find’ functions: Finding Logicals

These are the indices where the pattern match occurs:

head (str detect (SalSName, "Rawlings"))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

53/89



‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

which (str detect (SalSName, "Rawlings"))

[1] 10256 10257 10258

54/89



Showing difference in str_extract

str extract extracts just the matched string

ss = str extract (Sal$Name, "Rawling")
head (ss)

[1] NA NA NA NA NA NA
ss[ !'is.na(ss) ]

[1] "Rawling" "Rawling" "Rawling"

55/89



‘Find’ functions: finding values, stringr and dplyr

str subset (Sal$Name, "Rawlings")

[1]
[3]

"Rawlings,Kellye A"
"Rawlings-Blake, Stephanie C"

"Rawlings, Paula M"

Sal %$>% filter (str detect (Name, "Rawlings"))

# A tibble: 3 x 7
Name JobTitle
<chr> <chr>
1 Rawlings,Ke.. EMERGENCY D..
2 Rawlings, Pa.. COMMUNITY A..
3 Rawlings-Bl.. MAYOR

AgencylD Agency

<chr>

A40302
AQ04015
A01001

<chr>

M-R Info Te..
R&P-Recreat...
Mayors Offi..

HireDate AnnualSalary Grossl
<chr> <chr> <chr>
01/06/2.. $48940.00 $7335¢
12/10/2... $19802.00 $1044:
12/07/1... $167449.00 $1652¢

56/89



Using Regular Expressions

Look for any name that starts with:
- Payne at the beginning,
- Leonard and thenan S

- Spence then capital C

head (str subset ( Sal$Name, "“Payne.*"), 3)

[1] "Payne El,Boaz L" "Payne El1,Jackie"
[3] "Payne Johnson,Nickole A"

head (str subset ( Sal$Name, "Leonard.?S"))

[1] "Payne,Leonard S" "Szumlanski, Leonard S"
head (str subset ( Sal$Name, "Spence.*C.*"))

[1] "Spencer,Charles A" "Spencer,Clarence W" "Spencer,Michael C"

57/89



Showing differnce in str_extract and str_extract all

str extract all extracts all the matched strings - \\d searches for
DIGITS/numbers

head (str extract (Sal$AgencyID, "\\d"))
[l] "O" "2" "6" "9" "4" "9"
head (str extract all(Sal$AgencyID, "\\d"), 2)

[[11]
[l] "O" "3" HO" "3" "l"

[

[2]]
[1]

"2" "9" "O" "4" "5"

58/89



Showing differnce in str_replace and str_replace all
str replace all extracts all the matched strings

head (str replace (SalSName, "a", "j"))

[1] "Ajron,Patricia G" "Ajron, Petra L" "Abjineh, Yohannes T"
[4] "Abbene,Anthony M" "Abbey, Emmjnuel" "Abbott-Cole,Michelle"

head(str replace all (Sal$Name, "a", "3j"), 2)

[1] "Ajron,Pjtricij G" "Ajron,Petrj L"

59/89



Replace

Let's say we wanted to sort the data set by Annual Salary:

class (SalSAnnualSalary)

[1] "character"

head (Sal$AnnualSalary, 4)

[1] "$55314.00" "$74000.00"™ "$64500.00™ "$46309.00"
head (as.numeric (Sal$AnnualSalary), 4)

Warning in head(as.numeric (Sal$AnnualSalary), 4): NAs introduced by coercion

[1] NA NA NA NA

R didn't like the s so it thought turned them all to Na.

60/89



Replacing and substituting

Now we can replace the $ with nothing (used fixed ("s$") because $ means
ending):

Sal = Sal %>% mutate (
AnnualSalary = str replace(AnnualSalary, fixed("s"), ""),
AnnualSalary = as.numeric (AnnualSalary)
) $>%

arrange (desc (AnnualSalary) )

61/89



Pasting strings with paste and paste0

Paste can be very useful for joining vectors together:

paste ("Visit", 1:5, sep =" ")

[1] "Visit 1" "Visit 2" "Visit 3" "Visit 4" "Visit 5"

paste ("Visit", 1:5, sep =" ", collapse =" ")

[1] "Visit 1 Visit 2 Visit 3 Visit 4 Visit 5"

paste ("To", "is going be the ", "we go to the store!", sep = "day ")
[1] "Today 1s going be the day we go to the store!"

# and pastel can be even simpler see ?pastel
pastel ("Visit", 1:5)

[1] "Visitl" "Visit2" "Visit3" "Visit4" "Visitbh"

62/89



Uniting columns based on a separator

From tidyr, you can unite:

df = tibble(id = rep(1l:5, 3), visit = rep(l:3, each = 5))

df $>% unite(col = "unique id", id, visit, sep = " ")
# A tibble: 15 x 1

unique id

<chr>

11

O 00 ~J o) U WN
I T D R P P R

O W R O WO DN
WWwWwwwwhpdpdDdNDNNFRERFRERERE

63/89



Uniting columns based on a separator

From tidyr, you can unite:

df = tibble(id = rep(1l:5, 3), visit = rep(l:3, each = 5))
df $>% unite(col = "unique 1id", id, visit, sep = " ", remove = FALSE)

# A tibble: 15 x 3

unique 1id 1id visit
<chr>  <int> <int>
111 1 1
2 271 2 1
331 3 1
4 41 4 1
551 5 1
61 2 1 2
7 272 2 2
8 3 2 3 2
9 4 2 4 2
10 5 2 5 2
11 1 3 1 3
12 273 2 3
13 3 3 3 3
14 43 4 3
15 5 3 5 3

64/89



Paste Depicting How Collapse Works
paste (1:5)

[1] ™1m n2m m3m g owgy

paste (1:5, collapse = " ")

[1] "1 2 3 4 5"

65/89



Useful String Functions

Useful String functions
toupper (), tolower () - Uppercase or lowercase your data:
str trim() (inthe stringr package) or trimws in base

- will trim whitespace

* nchar - get the number of characters in a string

66/89



Sorting characters

sort - reorders the data - characters work, but not correctly
rank - gives the rank of the data - ties are split
order - gives the indices, if subset, would give the data sorted

- x[order (x) ] is the same as sorting

sort (c("1", "2", "10")) # not sort correctly (order simply ranks the data)
(1] "1™ "1Q™ "2"

order (c("1", "2", "10"))

[1] 1 3 2

X = rnorm(10)

xX[1l] = x[2] # create a tie

rank (x)

(1] 2.5 2.5 10.0 7.0 4.0 1.0 8.0 5.0 9.0 6.0

67/89



Lab Part 3
Website

68/89


http://johnmuschelli.com/intro_to_r/index.html

Website
Website

69/89


http://johnmuschelli.com/intro_to_r/index.html

Comparison of to base R -
not covered



Splitting Strings



Substringing
Very similar:
Base R

substr (x, start, stop) - substrings from position start to position stop

strsplit(x, split) - splits strings up - returns list!
stringr

str sub(x, start, end) -substrings from position start to position end

str split(string, pattern) -splits strings up - returns list!

72/89



Splitting String: base R

In base R, strsplit splits a vector on astringintoa list

X <= c("I really", "like writing", "R code programs")

y <- strsplit(x, split =" ") # returns a list
y

[[1]]

[l] nyn Hreallyn

[[2]]

[1] "like" "writing"

[[3]]

[l] nRw "code" "programs"

73/89



Showing differnce in str_extract and str_extract all

str extract all extracts all the matched strings - \\d searches for
DIGITS/numbers

head (str extract (Sal$AgencyID, "\\d"))
[l] "2" "9" "6" "2" "O" "O"
head (str extract all(Sal$AgencyID, "\\d"), 2)

[[11]
[l] "2" "9" HO" "OH "l"

[

[2]]
[1]

"9" "9" "3" "9" "O"

74/89



‘Find’ functions: base R

grep: grep, grepl, regexpr and gregexpr search for matches to argument

pattern within each element of a character vector: they differ in the format of
and amount of detail in the results.

grep (pattern, x, fixed=FALSE), where:

pattern = character string containing a regular expression to be matched in
the given character vector.

+ X = a character vector where matches are sought, or an object which can be
coerced by as.character to a character vector.

If fixed=TRUE, it will do exact matching for the phrase anywhere in the vector
(regular find)

75/89



‘Find’ functions: stringr compared to base R

Base R does not use these functions. Here is a “translator” of the stringr
function to base R functions

str detect - similar to grepl (return logical)

grep (value = FALSE) IS similar to which (str detect())

str subset - similar to grep (value = TRUE) - return value of matched
str replace - Similar to sub - replace one time

str replace all -similar to gsub - replace many times

76/89



Important Comparisons

Base R:

- Argument order is (pattern, x)

Uses option (fixed = TRUE)
stringr

- Argument order is (string, pattern) aka (x, pattern)

Uses function fixed (pattern)

77/89



‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

grep ("Rawlings", SalSName)

[1] 9 6854 13284

which (grepl ("Rawlings", SalSName) )

[1] 9 6854 13284

which (str detect (SalSName, "Rawlings"))

[1] 9 06854 13284

78/89



‘Find’ functions: Finding Logicals

These are the indices where the pattern match occurs:

head (grepl ("Rawlings", Sal$Name) )
[1] FALSE FALSE FALSE FALSE FALSE FALSE
head (str detect (SalSName, "Rawlings"))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

79/89



‘Find’ functions: finding values, base R

grep ("Rawlings", SalSName, value=TRUE)

[1]
[3]

Sal[grep ("Rawlings", Sal$Name) , ]

# A tibble: 3 x 7
Name JobTitle
<chr> <chr>
1 Rawlings-Bl.. MAYOR
2 Rawlings,Ke.. EMERGENCY D..
3 Rawlings, Pa.. COMMUNITY A..

AgencylD Agency

<chr>

A01001
A40302
A04015

<chr>

Mayors Offi..
M-R Info Te..
R&P—-Recreat...

"Rawlings-Blake, Stephanie C" "Rawlings,Kellye A"
"Rawlings, Paula M"

HireDate AnnualSalary Grossl

<chr> <dbl> <chr>
12/07/1... 167449 $16524
01/06/2.. 48940 $7335¢

12/10/2.. 19802 $1044:

80/89



Showing differnce in str_extract

str extract extracts just the matched string

ss = str extract (Sal$Name, "Rawling")
head (ss)

[1] NA NA NA NA NA NA
ss[ !'is.na(ss) ]

[1] "Rawling" "Rawling" "Rawling"

81/89



Showing differnce in str_extract and str_extract all

str extract all extracts all the matched strings

head (str extract (Sal$AgencyID, "\\d"))
[l] "2" "9" "6" "2" "O" "O"

head (str extract all(Sal$AgencyID, "\\d"), 2)

[[11]
[l] "2" "9" HO" "OH "l"

[

[
[1

21]
:| "9" "9" "3" "9" "OH

82/89



Using Regular Expressions
Look for any name that starts with:

- Payne at the beginning,

- Leonard and thenan S

- Spence then capital C
head (grep (""Payne.*", x = Sal$Name, value = TRUE), 3)
[1] "Payne,James R" "Payne,Karen V" "Payne,Jasman T"
head (grep ("Leonard.?3", x = Sal$SName, value = TRUE))
[1] "Szumlanski,Leonard S" "Payne,Leonard S"

head (grep ("Spence.*C.*", x = SalSName, value = TRUE))

[1] "Spencer,Michael C" "Spencer,Clarence W" "Spencer,Charles A"

83/89



Using Regular Expressions: stringr

head (str subset ( Sal$Name, "“Payne.*"), 3)

[1] "Payne,James R" "Payne,Karen V" "Payne,Jasman T"
head (str subset ( Sal$Name, "Leonard.?S"))

[1] "Szumlanski,Leonard S" "Payne,Leonard S"

head (str subset ( Sal$Name, "Spence.*C.*"))

[1] "Spencer,Michael C" "Spencer,Clarence W" "Spencer,Charles A"

84/89



Replace

Let's say we wanted to sort the data set by Annual Salary:

class (SalSAnnualSalary)

[1] "numeric"

sort (c("1", "2", "10")) # not sort correctly (order simply ranks the data)
(1] "1" "1Q0"™ "2"

order (c("1", "2", "10"))

[1] 1 3 2

85/89



Replace

So we must change the annual pay into a numeric:

head (Sal$AnnualSalary, 4)
[1] 238772 211785 200000 192500
head (as.numeric (Sal$AnnualSalary), 4)

[1] 238772 211785 200000 192500

R didn't like the s so it thought turned them all to Na.

sub () and gsub () can do the replacing part in base R.

86/89



Replacing and subbing

Now we can replace the $ with nothing (used fixed=TRUE because $ means
ending):

Sal$AnnualSalary <- as.numeric (gsub (pattern = "$", replacement="",
Sal$AnnualSalary, fixed=TRUE))

Sal <- Sal[order (SalSAnnualSalary, decreasing=TRUE), ]

Sal[l:5, c("Name", "AnnualSalary", "JobTitle")]

# A tibble: 5 x 3

Name AnnualSalary JobTitle

<chr> <dbl> <chr>
1 Mosby,Marilyn J 238772 STATE'S ATTORNEY
2 Batts,Anthony W 211785 Police Commissioner
3 Wen, Leana 200000 Executive Director III
4 Raymond,Henry J 192500 Executive Director III
5 Swift,Michael 187200 CONTRACT SERV SPEC II

87/89



Replacing and subbing: stringr

We can do the same thing (with 2 piping operations!) in dplyr

dplyr sal = Sal
dplyr sal = dplyr sal $>% mutate (
AnnualSalary = AnnualSalary %>%
str replace (
fixed ("S"),
" n) %>%
as.numeric) %>%
arrange (desc (AnnualSalary) )
check Sal = Sal
rownames (check Sal) = NULL
all.equal (check Sal, dplyr sal)

[1] TRUE

88/89



Website
Website

89/89


http://127.0.0.1:6524/index.html

