
Data Classes
Introduction to R for Public Health Researchers

Data Types:

One dimensional types (‘vectors’):·

Character: strings or individual characters, quoted

Numeric: any real number(s)

Integer: any integer(s)/whole numbers

Factor: categorical/qualitative variables

Logical: variables composed of TRUE or FALSE

Date/POSIXct: represents calendar dates and times

-

-

-

-

-

-

2/43

Character and numeric

We have already covered character and numeric types.

class(c("Andrew", "Jaffe"))

[1] "character"

class(c(1, 4, 7))

[1] "numeric"

3/43

Integer

Integer is a special subset of numeric that contains only whole numbers

A sequence of numbers is an example of the integer type

x = seq(from = 1, to = 5) # seq() is a function
x

[1] 1 2 3 4 5

class(x)

[1] "integer"

4/43

Integer

The colon : is a shortcut for making sequences of numbers

It makes consecutive integer sequence from [num1] to [num2] by 1

1:5

[1] 1 2 3 4 5

5/43

Logical

logical is a type that only has two possible elements: TRUE and FALSE

x = c(TRUE, FALSE, TRUE, TRUE, FALSE)
class(x)

[1] "logical"

is.numeric(c("Andrew", "Jaffe"))

[1] FALSE

is.character(c("Andrew", "Jaffe"))

[1] TRUE

6/43

Logical

Note that logical elements are NOT in quotes.

Bonus: sum() and mean() work on logical vectors - they return the total and
proportion of TRUE elements, respectively.

z = c("TRUE", "FALSE", "TRUE", "FALSE")
class(z)

[1] "character"

as.logical(z)

[1] TRUE FALSE TRUE FALSE

sum(as.logical(z))

[1] 2

7/43

General Class Information

There are two useful functions associated with practically all R classes, which
relate to logically checking the underlying class (is.CLASS_()) and coercing
between classes (as.CLASS_()).

is.numeric(c("Andrew", "Jaffe"))

[1] FALSE

is.character(c("Andrew", "Jaffe"))

[1] TRUE

8/43

General Class Information

There are two useful functions associated with practically all R classes, which
relate to logically checking the underlying class (is.CLASS_()) and coercing
between classes (as.CLASS_()).

as.character(c(1, 4, 7))

[1] "1" "4" "7"

as.numeric(c("Andrew", "Jaffe"))

Warning: NAs introduced by coercion

[1] NA NA

9/43

Factors

A factor is a special character vector where the elements have pre-defined
groups or ‘levels’. You can think of these as qualitative or categorical variables:

Note that levels are, by default, in alphanumerical order.

x = factor(c("boy", "girl", "girl", "boy", "girl"))
x

[1] boy girl girl boy girl
Levels: boy girl

class(x)

[1] "factor"

10/43

Factors

Factors are used to represent categorical data, and can also be used for ordinal
data (ie categories have an intrinsic ordering)

Note that R reads in character strings as factors by default in functions like
read.csv() (but not read_csv)

‘The function factor is used to encode a vector as a factor (the terms ’category’
and ‘enumerated type’ are also used for factors). If argument ordered is TRUE,
the factor levels are assumed to be ordered.’

factor(x = character(), levels, labels = levels,
 exclude = NA, ordered = is.ordered(x))

11/43

Necessary for the lab: %in%

Introduce the %in% operator:

reads “return TRUE if x is in 0 or 2”. (Like inlist in Stata).

x = c(0, 2, 2, 3, 4)
(x == 0 | x == 2)

[1] TRUE TRUE TRUE FALSE FALSE

x %in% c(0, 2) # NEVER has NA and returns logical

[1] TRUE TRUE TRUE FALSE FALSE

12/43

Lab Part 1

Website

13/43

http://johnmuschelli.com/intro_to_r/index.html

Factors

Suppose we have a vector of case-control status

We can reset the levels using the levels function, but this is bad and can cause
problems. You should do this using the levels argument in the factor()

cc = factor(c("case","case","case",
 "control","control","control"))
cc

[1] case case case control control control
Levels: case control

levels(cc) = c("control","case")
cc

[1] control control control case case case
Levels: control case

14/43

Factors

Note that the levels are alphabetically ordered by default. We can also specify the
levels within the factor call

casecontrol = c("case","case","case","control",
 "control","control")
factor(casecontrol, levels = c("control","case"))

[1] case case case control control control
Levels: control case

factor(casecontrol, levels = c("control","case"),
 ordered=TRUE)

[1] case case case control control control
Levels: control < case

15/43

Factors

Another way to do this once you already have the factor made is with the
relevel() function.

cc = factor(c("case","case","case",
 "control","control","control"))
relevel(cc, "control")

[1] case case case control control control
Levels: control case

16/43

Factors

One of the core “tidyverse” packages is forcats which offers useful functionality
for interacting with factors. For example, there is a function for releveling factors
here:

fct_relevel(cc, "control")

[1] case case case control control control
Levels: control case

17/43

Factors

There are other useful functions for dictating the levels of factors, like in the
order they appears in the vector, by frequency, or into collapsed groups.

levels(fct_inorder(chickwts$feed))

[1] "horsebean" "linseed" "soybean" "sunflower" "meatmeal" "casein"

levels(fct_infreq(chickwts$feed))

[1] "soybean" "casein" "linseed" "sunflower" "meatmeal" "horsebean"

levels(fct_lump(chickwts$feed, n=1))

[1] "soybean" "Other"

18/43

Factors

Factors can be converted to numeric or character very easily

x = factor(casecontrol,
 levels = c("control","case"))
as.character(x)

[1] "case" "case" "case" "control" "control" "control"

as.numeric(x)

[1] 2 2 2 1 1 1

19/43

Creating categorical variables

The rep() [“repeat”] function is useful for creating new variables

bg = rep(c("boy","girl"),each=50)
head(bg)

[1] "boy" "boy" "boy" "boy" "boy" "boy"

bg2 = rep(c("boy","girl"),times=50)
head(bg2)

[1] "boy" "girl" "boy" "girl" "boy" "girl"

length(bg) == length(bg2)

[1] TRUE

20/43

Lab Part 2

Website

21/43

http://johnmuschelli.com/intro_to_r/index.html

Dates

You can convert date-like strings in the Date class
(http://www.statmethods.net/input/dates.html for more info) using the
lubridate package!

circ = jhur::read_circulator()
head(sort(circ$date))

[1] "01/01/2011" "01/01/2012" "01/01/2013" "01/02/2011" "01/02/2012"
[6] "01/02/2013"

library(lubridate) # great for dates!
circ = mutate(circ, newDate2 = mdy(date))
head(circ$newDate2)

[1] "2010-01-11" "2010-01-12" "2010-01-13" "2010-01-14" "2010-01-15"
[6] "2010-01-16"

range(circ$newDate2) # gives you the range of the data

[1] "2010-01-11" "2013-03-01"

22/43

http://www.statmethods.net/input/dates.html

Works great - but need to specy the correct format still

See ?ymd and ?ymd_hms

x = c("2014-02-4 05:02:00", "2016/09/24 14:02:00")
ymd_hms(x)

[1] "2014-02-04 05:02:00 UTC" "2016-09-24 14:02:00 UTC"

ymd_hm(x)

Warning: All formats failed to parse. No formats found.

[1] NA NA

23/43

POSIXct

The POSIXct class is like a more general date format (with hours, minutes,
seconds).

x = c("2014-02-4 05:02:00", "2016/09/24 14:02:00")
dates = ymd_hms(x)
class(dates)

[1] "POSIXct" "POSIXt"

24/43

Adding Periods of time

The as.Period command is helpful for adding time to a date:

theTime = Sys.time()
theTime

[1] "2020-06-10 14:52:22 EDT"

class(theTime)

[1] "POSIXct" "POSIXt"

theTime + as.period(20, unit = "minutes") # the future

[1] "2020-06-10 15:12:22 EDT"

25/43

Differences in Times

You can subtract times as well, the difftime function is helpful as you can set
the units (note it does time1 - time2):

the_future = ymd_hms("2020-12-31 11:59:59")
the_future - theTime

Time difference of 203.7136 days

difftime(the_future, theTime, units = "weeks")

Time difference of 29.10194 weeks

26/43

Lab Part 3

Website

27/43

http://johnmuschelli.com/intro_to_r/index.html

Website

Website

28/43

http://johnmuschelli.com/intro_to_r/index.html

Data Classes:

Two dimensional classes:·

data.frame: traditional ‘Excel’ spreadsheets

Matrix: two-dimensional data, composed of rows and columns. Unlike
data frames, the entire matrix is composed of one R class, e.g. all numeric
or all characters.

-

Each column can have a different class, from above-

-

29/43

Matrices

n = 1:9
n

[1] 1 2 3 4 5 6 7 8 9

mat = matrix(n, nrow = 3)
mat

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

30/43

Data Selection

Matrices have two “slots” you can use to select data, which represent rows and
columns, that are separated by a comma, so the syntax is matrix[row,column].
Note you cannot use dplyr functions on matrices.

mat[1, 1] # individual entry: row 1, column 1

[1] 1

mat[1,] # first row

[1] 1 4 7

mat[, 1] # first columns

[1] 1 2 3

31/43

Data Selection

Note that the class of the returned object is no longer a matrix

class(mat[1,])

[1] "integer"

class(mat[, 1])

[1] "integer"

32/43

Data Frames

To review, the data.frame/tbl_df are the other two dimensional variable
classes.

Again, data frames are like matrices, but each column is a vector that can have
its own class. So some columns might be character and others might be
numeric, while others maybe a factor.

33/43

Lists

One other data type that is the most generic are lists.

Can be created using list()

Can hold vectors, strings, matrices, models, list of other list, lists upon lists!

Can reference data using $ (if the elements are named), or using [], or [[]]

·

·

·

·

> mylist <- list(letters=c("A", "b", "c"),
+ numbers=1:3, matrix(1:25, ncol=5))

34/43

List Structure

> head(mylist)

$letters
[1] "A" "b" "c"

$numbers
[1] 1 2 3

[[3]]
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

35/43

List referencing

> mylist[1] # returns a list

$letters
[1] "A" "b" "c"

> mylist["letters"] # returns a list

$letters
[1] "A" "b" "c"

36/43

List referencing

> mylist[[1]] # returns the vector 'letters'

[1] "A" "b" "c"

> mylist$letters # returns vector

[1] "A" "b" "c"

> mylist[["letters"]] # returns the vector 'letters'

[1] "A" "b" "c"

37/43

List referencing

You can also select multiple lists with the single brackets.

> mylist[1:2] # returns a list

$letters
[1] "A" "b" "c"

$numbers
[1] 1 2 3

38/43

List referencing

You can also select down several levels of a list at once

> mylist$letters[1]

[1] "A"

> mylist[[2]][1]

[1] 1

> mylist[[3]][1:2,1:2]

 [,1] [,2]
[1,] 1 6
[2,] 2 7

39/43

Quick Aside: “slicing” data: like _n and _N in Stata

In dplyr, there are first, last and nth operators.

If you first sort a data set using arrange, you can grab the first or last as so:

circ %>%
 mutate(first_date = first(newDate2),
 last_date = last(newDate2),
 third_date = nth(newDate2, 3)) %>%
 select(day, date, first_date, last_date, third_date) %>% head(3)

A tibble: 3 x 5
day date first_date last_date third_date
<chr> <chr> <date> <date> <date>
1 Monday 01/11/2010 2010-01-11 2013-03-01 2010-01-13
2 Tuesday 01/12/2010 2010-01-11 2013-03-01 2010-01-13
3 Wednesday 01/13/2010 2010-01-11 2013-03-01 2010-01-13

40/43

Quick Aside: “slicing” data

Many times, you need to group first

circ %>%
 group_by(day) %>%
 mutate(first_date = first(newDate2),
 last_date = last(newDate2),
 third_date = nth(newDate2, 3)) %>%
 select(day, date, first_date, last_date, third_date) %>% head(3)

A tibble: 3 x 5
Groups: day [3]
day date first_date last_date third_date
<chr> <chr> <date> <date> <date>
1 Monday 01/11/2010 2010-01-11 2013-02-25 2010-01-25
2 Tuesday 01/12/2010 2010-01-12 2013-02-26 2010-01-26
3 Wednesday 01/13/2010 2010-01-13 2013-02-27 2010-01-27

41/43

Differences in Times

circ = circ %>%
 group_by(day) %>%
 mutate(first_date = first(newDate2),
 diff_from_first = difftime(# time1 - time2
 time1 = newDate2, time2 = first_date))
head(circ$diff_from_first, 10)

Time differences in secs
[1] 0 0 0 0 0 0 0 604800 604800 604800

units(circ$diff_from_first) = "days"
head(circ$diff_from_first, 10)

Time differences in days
[1] 0 0 0 0 0 0 0 7 7 7

42/43

Website

Website

43/43

http://johnmuschelli.com/intro_to_r/index.html

