Starting with Raw Data

Image formats: DICOM

DICOM (Digital Imaging and Communications in Medicine) format

- Standardized way of representing images

- Usually how data is given either from scanner or hospital PACS (picture archiving and
communication system) system

- 2 integral pieces: Image data (in pixels) and header (meta-data (data about data))
- Think of a JPEG/bitmap and a text file

2/19

DICOM pixel data

The pixel data in a DICOM file is a matrix (fixed number of rows and columns).
One DICOM file represents one “slice” of the brain.

The oro.dicom package is good for reading in this data.

library (oro.dicom)
library (divest)
dem file = system.file("extdata", "testdata",

"0l.dcm", package = "divest")
slice = readDICOM(dcm file)

class (slice)

[1] "list™

3/19

readDICOM output

The output is a list with 2 elements: the DICOM header (hdr) and image (img)
information, both of which are lists.

Each element of hdr has a data. frame, and the elements of img are matrices:

names (slice)

[1] "hdr" "img"
class(slice[["hdr"]])
[1] "list"
class(sliceShdr[[1]])
[1] "data.frame"
class (slicesSimg)

[1] "list"
class(slicesimg[[1]])

[1] "matrix"

4/19

Display DICOM Image using image command

(We transpose the data using t () so the image faces “up” instead of “right”.)

image (t (slice$img[[1]]), col=gray(0:64/64))

04 06 038 1.0

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

5/19

DICOM Header Information
What about the header?

There are many fields, for example pixelSpacing, which is the dimensions (x and y) of a
pixel in millimeters (mm):

hdr = slice$Shdr[[1]]
hdr[hdrSname == 'PixelSpacing', "value"]

[1] "o

6/19

DICOM Header Information

Many fields - most important are tag, name and value:

head (hdr)
group element name code length
1 0002 0000 GroupLength UL 4
2 0002 0001 FileMetaInformationVersion OB 2
3 0002 0002 MediaStorageSOPClassUID Ul 26
4 0002 0003 MediaStorageSOPInstanceUID Ul 56
5 0002 0010 TransferSyntaxUID Ul 20
6 0002 0012 ImplementationClassUID Ul 18
value sequence
188
\001

1.2.840.10008.5.1.4.1.1.4
1.3.12.2.1107.5.2.30.25471.30000008091010241767100006233
1.2.840.10008.1.2.1

1.3.12.2.1107.5.2

O Uk Wi

7/19

DICOM Header Information

You can reshape this into a “wide” format using dicomTable

wide = oro.dicom: :dicomTable (sliceS$Shdr)

wide[, 1:5]
0002-0000-GroupLength 0002-0001-FileMetalInformationVersion
1 188 \001
0002-0002-MediaStorageSOPClassUID
1 1.2.840.10008.5.1.4.1.1.4

0002-0003-MediaStorageSOPInstanceUID

1 1.3.12.2.1107.5.2.30.25471.30000008091010241767100006233
0002-0010-TransferSyntaxUID
1 1.2.840.10008.1.2.1

8/19

Multiple DICOM files

We have discussed only one slice of the brain. What about multiple slices? If you pass a
directory into readDIcop, it will read in all DICOM files in that directory.

dem fol = system.file("extdata", "testdata", package = "divest")
all slices = readDICOM(dcm fol)

n = names (all slicesS$Shdr)

keep = grep("0(1|2) .dcm", n)

all slicesShdr = all slicesShdr[keep]

all slices$Simg = all slicesS$img[keep]

9/19

Multiple DICOM files: header reshaping

When you pass in multiple headers, you have a row for each file:

wide = oro.dicom::dicomTable (all slicesS$hdr)

wide[, 1:5]
0002-0000-GroupLength 0002-0001-FileMetaInformationVersion
01.dcm 188 \001
02.dcm 188 \001
0002-0002-MediaStorageSOPClassUID
01.dcm 1.2.840.10008.5.1.4.1.1.4
02.dcm 1.2.840.10008.5.1.4.1.1.4

0002-0003-MediaStorageSOPInstanceUID

0l.dcm 1.3.12.2.1107.5.2.30.25471.30000008091010241767100006233

02.dcm 1.3.12.2.1107.5.2.30.25471.30000008091010241767100006232
0002-0010-TransferSyntaxUID
01.dcm 1.2.840.10008.1.2.1
02.dcm 1.2.840.10008.1.2.1

10/19

NIfTI

Now that we have multiple slices read in, we can convert it to a 3-dimensional (3D) array,
where you can think of the array as stacking each slice (which is a matrix) on top of each
other. If each DICOM is a piece of paper, the 3D array is a stack of paper.

The way we store this 3D array is in the NIfTI (Neuroimaging Informatics Technology
Initiative) format.

11/19

DICOM vs. NIfTI

File extension:
Each file is a:

Header
information:

Different Images

DICOM

.dcm

slice of the brain

Many fields, protected health information, hospital-related
meta-data

Different Folders

NIfTI

.nii or .nii.gz (compressed)

3D image of brain

Image meta-data, no patient
information

Different Files (can be same
directory)

12/19

NIfTI

We can convert this list of header information and image information to a nifti object
(an R object) with the dicom2nifti command:

nii = dicomZnifti(all slices)
dim(nii); class(nii)

[1] 2 224 256
[1] "nifti"

attr (, "package")
[1] "oro.nifti"

We can see that this nii objectis indeed anifti object and has 3 dimensions.

13/19

Writing out NIfTI file

The writenii command from the neurobase package can write out this nifti object to
a NIfTI file (based on writeNIfTI from oro.nifti):

library (neurobase)

writenii(nim = nii, filename = "Output 3D File")
list.files (pattern = "Output 3D File")

[1] "Output 3D File.nii.gz"

Note that the extension is .nii.qgz, which is a compressed NIfTI file, which saves disk
space for storage.

You can output a non-compressed file using the argument gzipped=FALSE.

(NB: The filename argument in writeNI£fTI should NOT have an extension, but canin
writenii)

14/19

divest, dem2niir and dem2niix

dcm2niix is a piece of software from Dr. Chris Rorden that can convert nearly any
DICOM format to a NIfTI. It is our recommended way of converting DICOM to NIfTl files.

divest - Wraps dem2niix code in Rcpp (newer, still being tested)

decm2niir - wraps the binary dem2niix program. This is not as cross-platform (Linux
and Mac OSX only), but may handle some cases a bit better than divest (until that
package matures).

In each, you specify a path argument:

library (dcm2niir)

d = dcm2nii (path)

library (divest)

res = readDicom(path, interactive = FALSE)

15/19

Other DICOM converters

Although our main goal is to analyze neuro data with the fewest pieces of software, we
are pragmatic and use existing software if it works well.

The software converts DICOM files to NIfTI files, and can handle many different formats
and file types.

In general, the format we will be using will be NIfTl, and we will store out data in
compressed format, so extensions of our images will be .nii.gz.

16/19

Other formats

- For Philips scanners, files from the scanner are PAR/REC and not DICOM, but can still
be converted using dem2niix. r2a can also convert these to NIfTI.

- NIfTI format was based on ANALYZE format where the header and image were in
separate .hdr and . img files. This is an older fromat and we will not use this way of
storing data because 1) NIfTl can have one file with both header and image
information, and 2) Can be stored as compressed .nii.gz files.

* NRRD (Nearly Raw Raster Data) is another format similar to NIfTI. Much of the
neuroimaging software can read in both NRRD and NIfTI files, but NIfTl is much more
common.

17/19

http://sourceforge.net/projects/r2agui/

Conclusions

In this course, we will be using NIfTI images, and will be using readnii to read them in,
and writenii to write them out.
Images will be in gzipped format (extension .nii.gz)

- Additional software (e.g. FSL) will be useful to reorient the data to a specified
orientation before reading

DICOM images can be converted robustly using divest or decm2niix

18/19

Website

http://johnmuschelli.com/imaging_in_r

19/19

file:///Users/johnmuschelli/Dropbox/Teaching/imaging_in_r/index.html

